1.0 Welcome and Introductions

2.0 Review and approval of the minutes from Milwaukee, WI

3.0 Review and approval of agenda

4.0 Committee membership
 4.1 27 Voting members, 4 consulting members, and 26 associate members
 4.2 Introductions of new members
 4.2.1 Khaled Youssef
 4.2.2 Charles Kerzic
 4.2.3 Jeffrey O’Leary

5.0 Chair TAC Report
 5.1 Michael Brown

6.0 ACI 363 Report on Lightweight HSC Document Status - Subcommittee Chair Mauricio Lopez
 6.1 Balloted Chapters 2, 5, and 6
 6.1.1 Chapter 2, Selection of Materials
 6.1.2 Chapter 5, Properties of High Strength, Lightweight Concrete
 6.1.3 Chapter 6, Structural Design Considerations
 6.2 Current Ballot
 6.2.1 Chapter 3, Mix Proportioning of High Strength Lightweight Concrete
 6.3 Current Chapters
 6.3.1 Chapter 4, Batching and Mixing of High Strength Lightweight Concrete

7.0 Possible Special Publication on High Strength, Lightweight Concrete
 7.1 Update the information in ACI SP 136, Structural Lightweight Aggregate Concrete Performance (1992)

8.0 ACI 211.4R-08: Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious Materials
 8.1 Recommended the existing document to be kept for 2 more years
 8.2 Committee revisions needed by 2018
 8.3 Volunteers to review chapters

9.0 Open Committee Presentations
 9.1 Walt Flood IV, HSC Projects in Chicago
10.0 Technical Sessions
10.1 *HSC, It is not just for Tall Buildings*, Fall 2016, Philadelphia, PA, Revolutionary Concrete. Monday, October 24, Grand Ballroom Salon D. Speakers and presentation titles are below.
 1:30 *Use and Benefits of HSC in the Design of Hexcrete Wind Turbine Towers*, Sri Sritharan, Iowa State University
 2:00 *Use of HSC in Low Rise RC Shear Walls*, Robert Devine, Ashley Thrall, Yahya Kurama, and Steven Barbachyn, University of Notre Dame
 2:30 *Ultra-High Performance Fiber Reinforced Concrete: From Lab to Living Room*, Geert De Schutter, Ghent University
 3:00 *High Strength Lightweight Concrete Bridges*, Brett Holland and Matthew Sherman, Simpson Gumpertz & Heger, Inc,

11.0 Future Sessions
11.1 Probable topics and potential speakers:
 11.1.1 Production and placing high strength concrete
 11.1.2 Testing of high strength concrete
 11.1.3 In-situ testing of high strength concrete
 11.1.4 Material properties and performance
 11.1.5 Benefits of using high strength concrete
 11.1.6 Placing and Curing High Strength Concrete or High Strength, Lightweight Concrete

12.0 Other Business
 12.1 Conferences and Symposiums
 12.2 HSC projects

13.0 New Business

14.0 Next Meeting – Sunday, March 26, 2017 at 2:30 (Detroit)

15.0 Adjournment
Table of Contents for 211.4R-08

1.0 Chapter 1—Introduction and scope
 1.1 Introduction
 1.2 Scope
2.0 Chapter 2—Notation and definitions
 2.1 Notation
 2.2 Definitions
3.0 Chapter 3—Performance requirements
 3.1 Test age
 3.2 Required average compressive strength for f'cr
 3.3 Other requirements
4.0 Chapter 4—Concrete materials
 4.1 Introduction
 4.2 Portland cement
 4.3 Fly ash
 4.4 Silica fume
 4.5 Slag cement
 4.6 Combinations of other cementitious materials
 4.7 Mixing water
 4.8 Coarse aggregate
 4.9 Fine aggregate
 4.10 Chemical admixtures
5.0 Chapter 5—High-strength concrete mixture properties
 5.1 Introduction
 5.2 Water-cementitious material ratio
 5.3 Workability
6.0 Chapter 6—High-strength concrete mixture proportioning using fly ash
 6.1 Fundamental relationship
 6.2 Concrete mixture proportioning
 6.3 Sample calculations
7.0 Chapter 7—High-strength concrete mixture proportioning using silica fume
 7.1 Fundamental relationships
 7.2 Concrete mixture proportioning
 7.3 Sample calculations
8.0 Chapter 8—High-strength concrete mixture proportioning using slag cement
 8.1 Fundamental relationships
 8.2 Concrete mixture proportioning
 8.3 Sample calculations
9.0 Chapter 9—References
 9.1 Referenced standards and reports
 9.2 Cited references