October 10, 2014

To: Members ACI/CRSI Committee 315 - Details of Concrete Reinforcement

Voting Members:

Gregory P. Birley Dennis L. Hunter Mustafa A. Mahamid
Richard H. Birley David W. Johnston Javed B. Malik
David A. Grundler Mahmoud E. Kamara Christopher J. Perry
Robert W. Hall William M. Klorman Curtis Yokoyama
Todd R. Hawkinson Douglas D. Lee Peter Zdgiebloski

Associate/Consulting/Subcommittee Members:

Paul B. Aubee Garrick N. Goldenberg Thomas G. Schmaltz
Paul J. Brienen Paul Gordon William G. Sebastian
Larry Campbell James S. Lai Avanti C. Shroff
Pedro Estrada Amadeus L. Magpile Richard W. Stone
Christopher Evans David R. Maul Richard D. Thomas
Dennis J. Fontenot Harold E. Reed Farahad Zahedi
Peter Fosnough

From: Anthony L. Felder Secretary

Subject: Meeting Notice and Agenda
 October 26, 2014
 Washington Hilton
 Washington, D.C.

Our next meeting will be held on Sunday, October 26, 2014 from 2:00 p.m. to 5:00 p.m. in the Jay Room of the Washington Hilton in Washington, D.C.

A proposed agenda is attached.

Copy to: Eldon Tipping, TAC Contact
 Daniel W. Falconer, ACI Technical Director
AGENDA
ACI/CRSI COMMITTEE 315 - DETAILS OF CONCRETE REINFORCEMENT
Washington Hilton, Washington, D.C.
October 26, 2014

1. 2:00 p.m. - call meeting to order

2. Approval of minutes of last meeting, March 23, 2014, distributed July 18, 2014

3. Committee membership changes since last meeting. See Exhibit 1, current roster.

 Secretary’s Note: As reported in the March 23, 2014 minutes, Subcommittee B has been folded back into the main Committee.

4. Committee 315 – Details of Concrete Reinforcement – General Discussion
 a. ACI Detailing Manual – 2004 – Future direction and activities
 b. 315-B Forums – Re-write and re-publish. See Exhibit 2, Forums Published in CI

5. Bend Diameters and Tolerances: Progress report by Task Group (Hall, Hunter, Perry, and Zdgiebloski)

6. Nuclear Verbatim Compliance – Robbie Hall

7. Status Reports
 a. ACI 318-14 – Greg Zeisler, ACI Staff
 b. ACI SP-17 – Greg Zeisler, ACI Staff
 c. ACI 131 and BIM - Pete Zdgiebloski

8. Constructability:
 a. Review new Forums. See Exhibit 3, (Forum #46)
 b. Review volunteer’s progress. See Exhibit 4, Index of Forums
 c. Review “Forums for Discussion”. See Exhibit 5.

9. New Business

10. Motion to Adjourn
ACI/CRSI COMMITTEE 315 ROSTER
September 2014

Richard H. Birley, Chairman
Condor Rebar Consultants
1128 Hornby Street, 3rd Floor
Vancouver, British Columbia V6Z 2L4
Tel: 604/689-9201
Fax: 604/689-9206
E-mail: dick.birley@condor-rebar.com

Anthony L. Felder, Secretary
Concrete Reinforcing Steel Institute
933 N. Plum Grove Road
Schaumburg, IL 60173-4758
Tel: 847/517-1200
Fax: 847/517-1206
E-mail: afelder@crsi.org

Eldon Tipping, TAC Contact
Structural Services Inc.
115 Park Place Blvd, Ste 300
Waxahachie, TX 75165-9206
Tel: 214/522-6438
Fax: 214/522-6796
E-mail: etipping@ssiteam.com

Paul B. Aubee*
Insteel Wire Products
1373 Boggs Dr
Mount Airy, NC 27030-2145
Tel: 800/334-9504
Fax:
E-mail: paubee@ insteel.com

Gregory P. Birley
Condor Rebar Consultants
1128 Hornby Street, 3rd Floor
Vancouver, British Columbia V6Z 2L4
Tel: 604/692-2168
Fax: 604/689-9206
E-mail: greg.birley@condor-rebar.com

Paul J. Brienen*
Brienen Structural Engineers, PS
14114 SE 278th St
Kent, WA 98042-7406
Tel: 206/397-0000
Fax:
E-mail: pbrienen@ bse-ps.com

Larry Campbell*
CMC Rebar
5913 Diamond Oaks Ct
Haltom City, TX 76117-2802
Tel: 817/734-2838
Fax:
E-mail: larry.campbell@cmc.com

Pedro Estrada*
PEG Ongenieria C A
88-60 Calle Los Guayos
Urb Trigal Centro
Valencia 2001 Venezuela
Tel: 58-241 8428964
E-mail: pestradag@gmail.com

Christopher Evans*
Evans Design Consultancy Ltd.
PO Box 495
Witney, OX28 5NP, United Kingdom
Tel: 00-44-7778528410
Fax:
E-mail: christopher.evans@fwuk.fwc.com

Dennis J. Fontenot*
Commercial Metals Company
12001 Mystic Forest Ln
Austin, TX 78739-4813
Tel: 512/523-3398
Fax:
E-mail: dennis.fontenot@cmc.com

* - Associate Member
** - Consulting Member
*** - Subcommittee Member
Peter Fosnough*
Harris Rebar-Ambassador Steel
1342 S Grandstaff Dr.
Auburn, IN 46706-2661
Tel: 260/572-1227
Fax: 260/925-3152
E-mail: pfosnough@harrisrebar.com

Garrick N. Goldenberg*
Goldenberg Associates, Inc.
26 Tisdale Dr.
Dover, MA 02030-1600
Tel: 508/481-7400
Fax: 508/481-7406
E-mail: garrickg@wit.edu

Paul Gordon*
Paul Gordon Chartered, SE
6515 N Drake Ave.
Lincolnwood, IL 60712-4017
Tel: 312/943-3700
Fax: 312/943-3701
E-mail: pgchtd@aol.com

David A. Grundler
Applied Systems Associates
5270 Logan Ferry Road
Murrysville, PA 15668-9727
Tel: 724/733-8700
Fax: 724/325-5553
E-mail: David.Grundler@asahq.com

Robert W. Hall
Gerdau
1255 Lakes Parkway, Ste. 325
Lawrenceville, GA 30043-5818
Tel: 678/367-6036
Fax: 678/367-6001
E-mail: Robbie.Hall@gerdau.com

Todd R. Hawkinson
Wire Reinforcement Institute
323 Fox Briar Lane
Ballwin, MO 63021-6151
Tel: 314/807-4386
Fax: 636/227-3776
E-mail: todd@hawkinsonassociates.com

Dennis L. Hunter
Gerdau
2100 Joe McIntosh Road
Plant City, FL 33565-7413
Tel: 813/740-3301
Fax: 813/740-3401
E-mail: dennis.hunter@gerdau.com

David W. Johnston
North Carolina State University
Civil Engineering Department
Raleigh, NC 27695-0001
Tel: 919/515-7412
Fax: 919/515-7908
E-mail: johnston@ncsu.edu

Mahmoud E. Kamara
StructurePoint
2021 N Charter Point Dr.
Arlington Heights, IL 60004-7258
Tel: 847/259-5499
Fax:
E-mail: mekamara10@hotmail.com

William M. Klorman
W M Klorman Const Corp.
23047 Ventura Blvd, 2nd Floor
Woodland Hills, CA 91364-1146
Tel: 818/591-5969
Fax: 818/591-5926
E-mail: bklorman@klorman.com

- Associate Member
** - Consulting Member
*** - Subcommittee Member
James S. Lai*
Lai Associates
PO Box 517
La Canada Flintridge, CA 91012-0517
Tel: 818/790-5475
Fax:
E-mail: jslai@sbcglobal.net

David R. Maul*
Davis Wire Corp.
5555 Irwindale Ave
Irwindale, CA 91706-2046
Tel: 626/893-7426
Fax:
E-mail: dmaul@daviswire.com

Douglas D. Lee
Douglas D. Lee & Associates
6150 Foxglove Court
Fort Worth, TX 76112-1106
Tel: 817/457-7030
Fax: 817/457-8970
E-mail: ddlee4836@sbcglobal.net

Christopher J. Perry
Perry & Associates, LLC
221 N LaSalle St., Ste. 3100
Chicago, IL 60601-1206
Tel: 312/364-9112
Fax: 312/364-9163
E-mail: ejperry@PerryLLC.com

Amadeus L. Magpile**
Barlines Rebar Est. & Det.
2871 W. Carson St.
Torrance, CA 90503-6068
Tel: 310/618-8402
Fax: 310/618-8394
E-mail: amagpile@barlines.com

Harold E. Reed***
Davis Wire
85139 Appletree Dr.
Eugene, OR 97405-9702
Tel: 541/912-3195
Fax:
E-mail: hreed@daviswire.com

Mustafa A. Mahamid
University of Illinois at Chicago
842 W Taylor St
Chicago, IL 60607-7021
Tel: 312/355-0364
Fax:
E-mail: mmahamid@uic.edu

Dale Rinehart**
Sierra Rebar LLC
10480 E 96th Ave.
Henderson, CO 80640
Tel: 303/558-0015
Fax: 720/358-4101
E-mail: drinehart@sierrarebar.com

Javed B. Malik
Jacobs Engineering Group
5985 Rogeberal Rd
Houston, TX 77072-1601
Tel: 281/776-2540
Fax: 281/776-2501
E-mail: javed.malik@jacobs.com

Thomas G. Schmaltz**
Precision Rebar & Accessories, Inc.
1712 NE 99th Street
Vancouver, WA 98665-9018
Tel: 360/574-1022
Fax: 503/224-7414
E-mail: jerry@precision-rebar.com

* - Associate Member ** - Consulting Member *** - Subcommittee Member
William G. Sebastian**
American Rebar Detailing, LLC
543 Wright Loop
Williamstown, NJ 08094-1224
Tel: 856/728-6645
Fax: 856/728-0088
E-mail: wsebastian@comcast.net

Avanti C. Shroff**
Iffland Kavanagh Waterburry
2 Penn Plaza, Ste 603
New York, NY 10121-0101
Tel: 212/946-2300
Fax: 212/302-4645
E-mail: avantishroff@comcast.net

Richard W. Stone*
Richard W. Stone, PE Inc.
1523 Richard Dr.
West Chester, PA 19380-6332
Tel: 484/639-5511
Fax:
E-mail: rwstone1523@gmail.com

Richard D. Thomas**
CMC Rebar Florida
2665 Prince St.
Fort Myers, FL 33916-5527
Tel: 239/337-3480
Fax: 239/337-5542
E-mail: dale.thomas@cmc.com

Curtis R. Yokoyama
Fluor
23 Danta
Rancho Santa Margarita, CA 92688-1514
Tel: 949/349-4118
Fax:
E-mail: curtis.yokoyama@fluor.com

Farshad Zahedi*
Babol Noshirvani University of Tech
Shariati Avenue, Moalem 4, White House
Babol, Mazandaran Iran
Tel: +9809111170600
Fax:
E-mail: farshad.zahedi@gmail.com

Peter Zdgiebloski
CMC Rebar
PO Box 1208
Madison Heights, VA 24572-1208
Tel: 434/522-8311
Fax: 434/929-1964
E-mail: peter.zdgiebloski@cmc.com

* - Associate Member ** - Consulting Member *** - Subcommittee Member
315B Forums Published in Concrete International

<table>
<thead>
<tr>
<th>Forum</th>
<th>Title</th>
<th>CI Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forum #10</td>
<td>Fabrication Tolerances</td>
<td>Jun 2005</td>
</tr>
<tr>
<td>Forum #13</td>
<td>Placing Tolerances</td>
<td>Jul 2005</td>
</tr>
<tr>
<td>Forum #14</td>
<td>Forming Tolerances</td>
<td>Oct 2005</td>
</tr>
<tr>
<td>Forum #15</td>
<td>Use and Abuse of Tolerance</td>
<td>Feb 2006</td>
</tr>
<tr>
<td>Forum #16</td>
<td>About Bending Reinforcing Steel</td>
<td>Mar 2006</td>
</tr>
<tr>
<td>Forum #9</td>
<td>Configuration of Bars at Waterstops</td>
<td>May 2006</td>
</tr>
<tr>
<td>Forum #1</td>
<td>Bottom Beam Bar Laps</td>
<td>Dec 2006</td>
</tr>
<tr>
<td>Forum #29</td>
<td>Designing to Minimum Concrete Dimensions</td>
<td>Jul 2007</td>
</tr>
<tr>
<td>Forum #21</td>
<td>Shear Walls and Boundary Elements</td>
<td>Dec 2007</td>
</tr>
<tr>
<td>Forum #2</td>
<td>Curved Member with Tangentially Intersecting Member</td>
<td>Apr 2008</td>
</tr>
<tr>
<td>Forum #49</td>
<td>Limitation of Rebar Modelling</td>
<td>Nov 2008</td>
</tr>
<tr>
<td>Forum #12</td>
<td>Rebar Placing Drawings are not Shop Drawings</td>
<td>Dec 2008</td>
</tr>
<tr>
<td>Forum #30</td>
<td>Considering Bars That Exceed Stock Length</td>
<td>Jan 2009</td>
</tr>
<tr>
<td>Forum #31</td>
<td>Sloped vs Stepped Footings</td>
<td>Mar 2009</td>
</tr>
<tr>
<td>Forum #3</td>
<td>Insufficient Depth of grade Beam for Convenient Dowel Placing</td>
<td>May 2009</td>
</tr>
<tr>
<td>Forum #18</td>
<td>Alternating Bar Sizes</td>
<td>Jul 2009</td>
</tr>
<tr>
<td>Forum #7</td>
<td>Corner Details for Wall Horizontals</td>
<td>Sep 2009</td>
</tr>
<tr>
<td>Forum #23</td>
<td>Layering of Reinforcing Steel</td>
<td>Jan 2010</td>
</tr>
<tr>
<td>Forum #43</td>
<td>Beam Tie Configuration</td>
<td>Mar 2010</td>
</tr>
<tr>
<td>Forum #28</td>
<td>Concrete Cover at Drip Grooves, Rustication, etc.</td>
<td>Jun 2010</td>
</tr>
<tr>
<td>Forum #57</td>
<td>Using Standees</td>
<td>Aug 2010</td>
</tr>
<tr>
<td>Forum #26</td>
<td>Avoiding Ambiguous Call-Outs</td>
<td>Oct 2010</td>
</tr>
<tr>
<td>Forum #24</td>
<td>Trim bars at Openings</td>
<td>Dec 2010</td>
</tr>
<tr>
<td>Forum #8</td>
<td>Infills & Delay Strips Too Narrow to Lap bars</td>
<td>Apr 2011</td>
</tr>
<tr>
<td>Forum #5</td>
<td>Battered Walls</td>
<td>Jun 2011</td>
</tr>
<tr>
<td>Forum #4</td>
<td>Measuring Sloped Walls</td>
<td>Dec 2011</td>
</tr>
<tr>
<td>Forum #54</td>
<td>Rebar Layout for Mat Foundations and Pile Caps</td>
<td>Feb 2012</td>
</tr>
<tr>
<td>Forum #20</td>
<td>Connecting Pre-Assembled Rebar Wall Curtains</td>
<td>Apr 2012</td>
</tr>
<tr>
<td>Forum #32</td>
<td>Beam Steps</td>
<td>Jun 2012</td>
</tr>
<tr>
<td>Forum #47</td>
<td>Location of Verticals at Wall Intersections</td>
<td>Aug 2012</td>
</tr>
<tr>
<td>Forum #42</td>
<td>Column Tie Configuration</td>
<td>Nov 2012</td>
</tr>
<tr>
<td>Forum #6</td>
<td>Column & Boundary Element Dowels</td>
<td>Dec 2012</td>
</tr>
<tr>
<td>Forum #45</td>
<td>Layout of Two-Way Slabs</td>
<td>Feb 2013</td>
</tr>
</tbody>
</table>
Introduction

In nearly every building construction project, mechanical pads and machine bases are utilized to support equipment, such as air handlers, pumps, generators, transformers, switch gears, motor control centers and so forth. More commonly called, Housekeeping pads, these items are difficult to construct as the concrete placer must be aware of their locations, place steel reinforcement where needed and ensure finishing is done properly so as the area around the housekeeping pads (HK Pads) is complete correctly.

Seismic concerns are also important in seismic regions. Engineers must ensure that not only is the equipment securely anchored to the HK Pads but that the HK Pads are anchored to the floor slab/system.

Below is a typical housekeeping pad detail. This shows drilling and grouting

![INTERIOR EQUIPMENT PAD DETAIL](image)

Figure 1: Typical Detail of a Housekeeping pad

Before we touch on the reinforcement detailing, it is important to note a concrete concern in this detail and one that presents itself in many construction projects; that is the height of the pad. In Figure 1, you see the Engineer called for a 4” minimum thick HK Pad. This requires the contractor use 2x6” lumber and cut down to 4 plus inches or use chalk lines inside the forms to note the height at or above 4”. In some cases Engineers and Architects will call for 4” nominal, this typically means a 2”x4” can be utilized. Repeating, typically this means one can use dimension lumber when nominal is used. If the floor slab is sloped then minimums may be required to ensure the proper depth is utilized. Later, the author will discuss other options for HK Pad thicknesses.

**General Notes: ???
Cast-in-Place, Embedded Dowel Reinforcement Steel

In this situation pre-planning is required. Reinforcement is placed on the main slab steel prior to pouring the main slab. Steel “Z” bars are shown to the left in Figure 2 below show the placement of the dowels which must occur in a regular pattern around the HK pad. This can be difficult to construct. Securing the “Z” bars is difficult to maintain their position while placing the remaining steel. Once in place and the mat of steel is tied to the top, here welded wire reinforcement is shown, the system is somewhat secure but may move as concrete is poured. Additional reinforcement steel cross framing may have to be used to stabilize the set.

One-piece steel reinforcement can be utilized in this case. The Z bar then would take the shape of a top hat. Both ends would be embedded into the main slab, refer to Figure 3 below.

Figure 2: Cast-in-Place Embedded Dowels - Housekeeping pad

Drilled and Grouted

In Figure 2 above, drilled and grouted anchors can be utilized as well. Refer to the right side of Figure 2. Here, the installation of the main slab steel and concrete is not concerned with the HK Pad placement. The main slab can be finished and after curing, can be drilled for HK Pad placement. A concern here is care may have to be exercised so as not to drill into slab steel that may be present where drilled and grouted anchors are to be placed.

Another concern with the drilled and grouted system is with regards to seismic. The capacity of the drilled and grouted anchor must be checked for all conditions including uplift. Tension capacity of these anchors is an issue to be watchful of.

Sleeves and Grouted

Another option the contractor could utilize is placing sleeves into his forms at the locations where steel would be used to anchor the HK Pads. This option would require planning initially prior to pouring the main slab. Questions arise that should be asked of oneself. Are the sleeves corrugated to provide anchorage to the main slab concrete and grout internally? What type of anchor would be used? How is the area under the sleeve closed off for grouting? This method would work for anchors that would be bolted into the main slab and extend up into the HK Pad.
Seismic Concerns

Anchorage to the main slab is critical for seismic forces from the equipment and HK Pads to be transferred to the main supporting members. The engineer designing housekeeping pads should ensure the details provided address seismic forces.

Occasionally HK Pads are installed without dowels to the main slab, aren't provided with drilled and grouted anchors. Such instances may occur if a piece of equipment is added after the main slab and all other HK Pads are poured.

In this case post installed anchors can be used. Refer to Figure 3

Figure 3: Post-Installed Anchors - Housekeeping pad

Here one can see the thickness of the pad has been changed to the small dimension of the dimensional lumber. By doing so, the post-installed anchors can be ordered a bit shorter.

Engineers must check the seismic forces, if earthquakes are an issue in the area installed.

One point to this installation is the anchors can be utilized to secure the equipment at the same time, if the number of anchors provided is adequate for the design conditions.

Todd Hawkinson
2014
<table>
<thead>
<tr>
<th>Forum</th>
<th>Title</th>
<th>Prepared by</th>
<th>Complete</th>
<th>CI Issue</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Bottom Beam Bar Laps</td>
<td>Dick Birley</td>
<td>X</td>
<td>Dec 2006</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#2</td>
<td>Curved Member with Tangentially Intersecting Member</td>
<td>Dick Birley</td>
<td>X</td>
<td>Apr 2008</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#3</td>
<td>Insufficient Depth of grade Beam for Convenent Dowel Placing</td>
<td>Dick Birley</td>
<td>X</td>
<td>May 2009</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#4</td>
<td>Measuring Sloped Walls</td>
<td>Dick Birley</td>
<td>X</td>
<td>Dec 2011</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#5</td>
<td>Battered Walls</td>
<td>Dick Birley</td>
<td>X</td>
<td>Jun 2011</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#6</td>
<td>Column & Boundary Element Dowels</td>
<td>Dick Birley</td>
<td>X</td>
<td>Dec 2012</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#7</td>
<td>Corner Details for Wall Horizontals</td>
<td>Dick Birley</td>
<td>X</td>
<td>Sep 2009</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#8</td>
<td>Infills & Delay Strips Too Narrow to Lap bars</td>
<td>Dick Birley</td>
<td>X</td>
<td>Apr 2011</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#9</td>
<td>Configuration of Bars at Waterstops</td>
<td>Dick Birley</td>
<td>X</td>
<td>May 2006</td>
<td>Javed Malik</td>
</tr>
<tr>
<td>#10</td>
<td>Fabrication Tolerances</td>
<td>Dick Birley</td>
<td>X</td>
<td>Jun 2005</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#11</td>
<td>Considering Accumulating Tolerances</td>
<td>Dick Birley</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#12</td>
<td>Rebar Placing Drawings are not Shop Drawings</td>
<td>Dick Birley</td>
<td>X</td>
<td>Dec 2008</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#13</td>
<td>Placing Tolerances</td>
<td>Dick Birley</td>
<td>X</td>
<td>Jul 2005</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#14</td>
<td>Forming Tolerances</td>
<td>Dick Birley</td>
<td>X</td>
<td>Oct 2005</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#15</td>
<td>Use and Abuse of Tolerance</td>
<td>Dick Birley</td>
<td>X</td>
<td>Feb 2006</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#16</td>
<td>About Bending Reinforcing Steel</td>
<td>Dick Birley</td>
<td>X</td>
<td>Mar 2006</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>#17</td>
<td>Starter Walls</td>
<td>Greg Birley</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#18</td>
<td>Alternating Bar Sizes</td>
<td>Greg Birley</td>
<td>X</td>
<td>Jul 2009</td>
<td>Greg Birley / Neal Anderson</td>
</tr>
<tr>
<td>#19</td>
<td>Minimum Requirements for Drawings</td>
<td>Todd Hawkinson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>Connecting Pre-Assembled Rebar Wall Curtains</td>
<td>Greg Birley</td>
<td>X</td>
<td>Apr 2012</td>
<td>Greg Birley / Neal Anderson</td>
</tr>
<tr>
<td>#21</td>
<td>Shear Walls and Boundary Elements</td>
<td>Javed Malik</td>
<td>X</td>
<td>Dec 2007</td>
<td>Javed Malik</td>
</tr>
<tr>
<td>#22</td>
<td>Using High Strength Rebar</td>
<td>Dick Birley</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#23</td>
<td>Layering of Reinforcing Steel</td>
<td>Greg Birley</td>
<td>X</td>
<td>Jan 2010</td>
<td>Greg Birley / Neal Anderson</td>
</tr>
<tr>
<td>#24</td>
<td>Trim bars at Openings</td>
<td>Greg Birley</td>
<td>X</td>
<td>Dec 2010</td>
<td>Greg Birley / Neal Anderson</td>
</tr>
<tr>
<td>#25</td>
<td>Pin Sizes and Bend Diameters</td>
<td>Dennis Hunter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#26</td>
<td>Avoiding Ambiguous Call-Outs</td>
<td>Dick Birley</td>
<td>X</td>
<td>Oct 2010</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#27</td>
<td>Location of Construction Joints</td>
<td>Dick Birley</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#28</td>
<td>Concrete Cover at Drip Grooves, Rustication, etc.</td>
<td>Greg Birley</td>
<td>X</td>
<td>Jun 2010</td>
<td>Greg Birley / Neal Anderson</td>
</tr>
<tr>
<td>#29</td>
<td>Designing to Minimum Concrete Dimensions</td>
<td>Javed Malik</td>
<td>X</td>
<td>Jul 2007</td>
<td>Javed Malik</td>
</tr>
<tr>
<td>#30</td>
<td>Considering Bars That Exceed Stock Length</td>
<td>Dick Birley</td>
<td>X</td>
<td>Jan 2009</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>#31</td>
<td>Sloped vs Stepped Footings</td>
<td>Javed Malik</td>
<td>X</td>
<td>Mar 2009</td>
<td>Javed Malik / Neal Anderson</td>
</tr>
<tr>
<td>#32</td>
<td>Beam Steps</td>
<td>Javed Malik</td>
<td>X</td>
<td>Jun 2012</td>
<td>Javed Malik / Neal Anderson</td>
</tr>
<tr>
<td>#33</td>
<td>Slab Steps</td>
<td>Javed Malik</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#34</td>
<td>Top of Column Configurations</td>
<td>Robbie Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#35</td>
<td>Top of Pile Configurations</td>
<td>Javed Malik</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#36</td>
<td>Wrapping Structural Steel</td>
<td>Javed Malik</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#37</td>
<td>Mixing Grades of Steel in a Project</td>
<td>Greg Birley</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#38</td>
<td>Using the Latest Codes</td>
<td>Todd Hawkinson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#39</td>
<td>Minimum Dimension for Type 17 - Side C</td>
<td>Greg Birley</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>Location of Offsets on Column Vertical Bars</td>
<td>Robbie Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#41</td>
<td>Alternating hooks on ties in columns and beams</td>
<td>Robbie Hall</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#42</td>
<td>Column Tie Configuration</td>
<td>Robbie Hall</td>
<td>X</td>
<td>Nov 2012</td>
<td>Robbie Hall / Neal Anderson</td>
</tr>
<tr>
<td>#43</td>
<td>Beam Tie Configuration</td>
<td>Greg Birley</td>
<td>X</td>
<td>Mar 2010</td>
<td>Greg Birley / Neal Anderson</td>
</tr>
<tr>
<td>#44</td>
<td>Direction of hooks on wall and column dowels and vertical bars</td>
<td>Peter Zdziebloski</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#45</td>
<td>Layout of Two-Way Slabs</td>
<td>Javed Malik</td>
<td>X</td>
<td>Feb 2013</td>
<td>Javed Malik / Neal Anderson</td>
</tr>
<tr>
<td>#46</td>
<td>Mechanical Pads and Machine Bases</td>
<td>Todd Hawkinson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#47</td>
<td>Location of Verticals at Wall Intersections</td>
<td>Greg Birley</td>
<td>X</td>
<td>Aug 2012</td>
<td>Greg Birley / Neal Anderson</td>
</tr>
<tr>
<td>Forum</td>
<td>TITLE</td>
<td>Prepared by:</td>
<td>CI Issue</td>
<td>Author</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Forum #48</td>
<td>Preassembly of Boundary Elements and Coupling Beams</td>
<td>Paul Brienen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #49</td>
<td>Limitation of Rebar Modelling</td>
<td>Dick Birley</td>
<td>X</td>
<td>Nov 2008</td>
<td>Dick Birley</td>
</tr>
<tr>
<td>Forum #50</td>
<td>Staggered Lap Splices</td>
<td>Robbie Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #51</td>
<td>Use of Wire Reinforcement for Footings and Beams</td>
<td>Todd Hawkinsen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #52</td>
<td>Interpreting Engineering Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #53</td>
<td>Sharing of CAD Files</td>
<td>Dave Grundler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #54</td>
<td>Rebar Layout for Mat Foundations and Pile Caps</td>
<td>Javed Malik</td>
<td>X</td>
<td>Feb 2012</td>
<td>Javed Malik / Neal Anderson</td>
</tr>
<tr>
<td>Forum #55</td>
<td>Interpreting Beam Schedules</td>
<td>Peter Zdgiebloski</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #56</td>
<td>Interpreting Column Schedules</td>
<td>Peter Zdgiebloski</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #57</td>
<td>Using Standees</td>
<td>Dick Birley</td>
<td>X</td>
<td>Aug 2010</td>
<td>Dick Birley / Neal Anderson</td>
</tr>
<tr>
<td>Forum #58</td>
<td>Dropped Main Reinforcing for Use as Support Bars</td>
<td>Robbie Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #59</td>
<td>Defining Top Bars vs. Other Bars</td>
<td>Robbie Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #60</td>
<td>Corrosion Resistant Reinforcing Steel</td>
<td>Pete Fosnough</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #61</td>
<td>Cutting and Bending with a Torch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #62</td>
<td>Bending Bars Projecting From Concrete</td>
<td>MSP - ACI 318</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #63</td>
<td>Mechanical Couplers and Form Savers</td>
<td>Pete Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #64</td>
<td>Standard Hooks Exceeding Concrete Dimensions</td>
<td>Pete Z / Robbie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #65</td>
<td>Bar Configuration at Penetrations Near Footings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #66</td>
<td>Diagonals at Openings in Thin Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #67</td>
<td>Standard use for Bar Supports</td>
<td>Robbie Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #68</td>
<td>Rust on Rebar</td>
<td>Robbie/Dennis/Pete Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #69</td>
<td>Surface Contamination of Stainless Steel Reinforcing</td>
<td>Dick Birley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forum #70</td>
<td>Introduction to Steel Reinforcing Bar Splices</td>
<td>Robbie Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code: White - available; Pink - in process; Green - draft submitted; Yellow - reviewed & complete
#19 - Minimum Requirements for Drawings [Todd Hawkinson]
- Hold until the new code comes out

#25 - Mandrel Sizes and Bend Diameters [Dennis Hunter]
- A research project is underway at NC State University that is re-assessing the current bend diameters used in the industry. Due to be completed in May 2014

#33 - Slab Steps [Javed Malik]
- Usually slabs are too thin for standard hooks
- Within 20% of slab support, steps are not a big issue
- Otherwise, step needs design attention
- Use straight bars and laps rather than hooks and offsets
- Use thicker slabs to avoid stepping bottom soffit; step top only

#34 - Top of column configuration [Robbie Hall]
- Hook verticals
- Use hooked bars lapped with verticals; do not need bending capacity or development lengths
- Terminators or T-heads if possible; cannot be in the same plane
- Congestion in beams or slabs
- Round columns
- Columns at edge of slabs – where to hooks go?
- Provide lots of sketches

#35 - Top of Pile configuration [Javed Malik]
- Hook verticals
- Use hooked bars lapped with verticals; may need bending capacity or development lengths
- Terminators or T-heads
- Difficulties in confined pile caps
- Make cap thicker to develop straight bars
- Provide lots of sketches

#36 - Wrapping structural steel [Javed Malik]
- Interference of ties with 135° hooks
- Problem with bars that must penetrate I-beam web; use two lapped "J"-bars
- Use smaller structural steel and avoid the use of cross-ties as much as possible
- Composite columns are an item that has not been completely settled among engineers

#37 - Mixing grades of steel in a project [Greg Birley]
- Avoid if at all possible; price difference is minimal
- Mixing grades may cause expensive problems
- In a project
- In a member
- Segregation is difficult
- Difficult to trace grade once in concrete
- Some steel is not easily identified

October 2012
#40 - Location of offsets on column vertical bars (Robbie Hall)
- Place offsets below beam soffit
- Note that moment is at the top of columns
- Offset of column verticals passing through beams
- Inverting column offsets, i.e. offset at bottom of column rather than at top

#41 - Alternating hooks on ties in columns and beams (Robbie Hall)
- Extra labor
- Vibrators get caught on the hooks
- More difficult to place cages over dowels
- More difficult to install corbels and embeds
- Is alternating of 135° hooks necessary

#44 - Direction of hooks on wall and column dowels and vertical bars (Peter Zdziebloski)
- Hook inward wherever possible
- Simpler for pre-assembly
- Walls get better development
- Use 'U'-bars for dowels

#46 - Mechanical pads and machine bases (Todd Hawkinson)
- Provide option for embedded dowels or drill-and-grout dowels (best)
- Use dowels rather than one-piece bars
- General notes often do not apply to site situations
- Grout dowels in sleeves
- Consider seismic issue

#48 - Preassembly of Boundary elements and Coupling Beams (Paul Brienen)

#52 - Interpreting Engineering Drawings

#53 - Sharing of CAD files (Dave Grundler)

#55 - Interpreting Beam Schedules (Peter Zdziebloski)
- Javed will send a sample to person who does this forum

#56 - Interpreting Beam Schedules (Peter Zdziebloski)
- Pete is asking for someone to rewrite this forum

#67 - Standard Use of Bar Supports (Robbie Hall)
- Reviewing CRSI document in order to write draft

#68 - Rust on Rebar (Robbie Hall / Dennis Hunter)
- Collating various documents in order to write draft