ACI Committee 360
Design of Slabs on Ground

MEETING AGENDA

Monday, November 6, 2006
Denver, CO

2:00PM - 6:30PM – COLUMBINE

1. Call to order
 Wayne Walker – Chair
 A. Introduction of members
 B. Do not forget to sign one of the attendance sheets
 C. Update member contact information on ACI's web site
 i) Go to http://www.concrete.org "login" then "Members" then "Address Change"

2. Comments concerning previous meeting minutes

3. Report of Committee 302 Meeting
 Pat Harrison

4. Update on the document sent to ACI for publication and review of final editorial changes.
 Wayne Walker
 A. Additional 22 questions from ACI answered
 B. Final review completed
 C. Posting to our ACI 360 web site the final Word document for our future use

5. Update on ACI 301 developing a specification for slabs on ground
 Harrison/Tarr
 A. Discussion for the need of a ACI 360 "guide" if ACI 301 has a "mandatory" specification
 B. Coordination of the ACI 301 slab on ground specification with the ACI 360 document

6. Discussions with Chapter Chairs for setting goals for incorporating new information.
 Allen Face
 A. Chapter 1 - Introduction
 B. Chapter 2 - Slab types
 i) Provide more emphasis on which slabs are designed not to crack (for example, jointed unreinforced, shrinkage-compensating, post-tensioned, HVSF, etc.) and those designed to crack (for example, continuously reinforced and steel fiber slabs).
 ii) Provide guidance for slab design information to be shown on the drawings.
 iii) Provide design guidance for slabs in difficult environmental conditions, such as low humidity.
 iv) Provide guidance on design expectations.
 v) Lift cycle cost information.
 vi) Provide guidance on Owner's responsibilities in the "pros" and "cons"
 vii) Provide guidance on acceptable joint stability.
 viii) Provide guidance on acceptable crack stability and reduce the current document focus on crack width as an acceptance criterion.
 C. Chapter 3 - Soil support systems for slabs-on-ground
 i) Revise Table 3.3 – Soil stabilization with chemical admixtures

Page 1 of 2
D. Chapter 4 - Loads
 i) Provide details for reinforcement at reentrant corners and at discontinuous slab joints
 ii) Provide guidance on dowel design
E. Chapter 5 - Joints
 i) Provide details for reinforcement at reentrant corners and at discontinuous slab joints
 ii) Provide guidance on dowel design
F. Chapter 6 - Design of unreinforced concrete slabs
G. Chapter 7 - Design of slabs reinforced for crack-width control
 i) Provide guidance for designing reinforcement regarding control crack widths for slabs:
 (1) Designed using the joint spacings shown in Figure 5.3.
 (2) Designed as continuously reinforced to eliminate joints
H. Chapter 8 - Design of shrinkage-compensating concrete slabs
 i) Provide guidance for the optimization of reinforcement for slabs using shrinkage-compensating concrete.
 ii) Provide information and an example to account for the effect of the base friction to properly determine the optimum reinforcement.
I. Chapter 9 - Design of post-tensioned slabs-on-ground
 i) Removing the section and example problem for expansive soils and refer to the PTI publication.
 (1) Issues with metrification of the equations in the PTI publication
 (2) PTI provides a more complete discussion on expansive soils
J. Chapter 10 – Fiber-reinforced concrete slabs-on-ground
 i) Provide serviceability design requirements for steel fiber slabs. Serviceability requirements to include steel fiber amounts to control crack widths, joint activation, shear transfer at joints.
 ii) Provide design guidance for HVSF slabs
K. Chapter 11 - Structural slabs-on-ground
 i) Provide guidance when the floor slab is used to laterally support the building foundations, such as for pre-engineered buildings
L. Chapter 12 - Design of Slabs for Refrigerated Buildings
M. Chapter 13 - Reducing the Effects of Slab Shrinkage and Curling
N. Chapter 14 – References
O. Chapter XX – Concrete Mix Design
 i) Provide guidance to the slab designer on how to properly specify a concrete slab mix.
 ii) Provide guidance on the "pros" and "cons" of concrete shrinkage testing in evaluating mix designs.
 iii) Calcium Chloride versus Non-Chloride Accelerators

7. Adjourn