Agenda of ACI 363 – High-Strength Concrete
Sunday, October 15, 2017
Room: D-Monorail B
2:30 PM to 5:00 PM
ACI 2017 Fall Convention – Anaheim, CA
Presiding: Mauricio Lopez

1.0 Welcome and Introductions

2.0 Review and approval of the minutes from Detroit, MI

3.0 Review and approval of agenda

4.0 Committee membership
 4.1 27 Voting members, 4 consulting members, and 23 associate members

5.0 Chair TAC Report
 5.1 Michael Brown

6.0 ACI 363 Report on Lightweight HSC Document Status - Subcommittee Chair Mauricio Lopez
 6.1 Balloted Chapters 2, 5, and 7
 6.1.1 Chapter 2, Selection of Materials
 6.1.2 Chapter 5, Properties of High Strength, Lightweight Concrete
 6.1.3 Chapter 7, Applications

7.0 ACI 211.4R-08: Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement and Other Cementitious Materials
 7.1 Recommended the existing document to be kept for 2 more years
 7.2 Committee revisions needed by 2018
 7.3 Volunteers to review chapters

8.0 Open Committee Presentations
 8.1 Proposed mini-session for Spring 2018

9.0 Future Sessions – Walt Flood, IV
 9.1 Concrete Modulus of Elasticity – How High is High?
 ACI Spring, Salt Lake City, UT – 363 is a co-sponsor
 9.2 Ensuring a Successful High Strength Concrete Project
 Salt Lake City, Spring 2018, Postpone until Fall 2018 in Las Vegas?
 4 to 5 speakers are needed.

10.0 Other Business
 10.1 Conferences and Symposiums
 10.2 HSC projects

11.0 New Business

12.0 Committee Liaisons
12.1 HSC updates from other ACI Committees

13.0 Next Meeting – Sunday, March 25, 2017 at 2:30 (Salt Lake City)

14.0 Adjournment
Table of Contents for 211.4R-08

1.0 Chapter 1—Introduction and scope
 1.1 Introduction
 1.2 Scope

2.0 Chapter 2—Notation and definitions
 2.1 Notation
 2.2 Definitions

3.0 Chapter 3—Performance requirements
 3.1 Test age
 3.2 Required average compressive strength for f_{cr}
 3.3 Other requirements

4.0 Chapter 4—Concrete materials
 4.1 Introduction
 4.2 Portland cement
 4.3 Fly ash
 4.4 Silica fume
 4.5 Slag cement
 4.6 Combinations of other cementitious materials
 4.7 Mixing water
 4.8 Coarse aggregate
 4.9 Fine aggregate
 4.10 Chemical admixtures

5.0 Chapter 5—High-strength concrete mixture properties
 5.1 Introduction
 5.2 Water-cementitious material ratio
 5.3 Workability

6.0 Chapter 6—High-strength concrete mixture proportioning using fly ash
 6.1 Fundamental relationship
 6.2 Concrete mixture proportioning
 6.3 Sample calculations

7.0 Chapter 7—High-strength concrete mixture proportioning using silica fume
 7.1 Fundamental relationships
 7.2 Concrete mixture proportioning
 7.3 Sample calculations

8.0 Chapter 8—High-strength concrete mixture proportioning using slag cement
 8.1 Fundamental relationships
 8.2 Concrete mixture proportioning
 8.3 Sample calculations

9.0 Chapter 9—References
 9.1 Referenced standards and reports
 9.2 Cited references