ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 16 Abstracts search results

Document: 

SP-350_08

Date: 

November 1, 2021

Author(s):

José A. Guzmán-Torres, Francisco J. Domínguez-Mota, Gerardo Tinoco-Guerrero, Elia M. Alonso-Guzmán, and Wilfrido Martínez-Molina

Publication:

Symposium Papers

Volume:

350

Abstract:

Artificial Intelligence has one of the most efficient methods for solving engineering and materials problems because of its impressive performance and can reach higher accuracy. The Deep Learning theory is an approach based on Deep Neural Networks for establishing numerical analysis and value predictions. This paper proposes a fresh approach, using a Deep Learning model for predicting the compressive strength in a particular concrete just based on non-destructive test measurements (NDTs). The model proposed is an attractive alternative to estimate the resistance of compressive strength in any structure, just taking data like ultrasonic pulse velocity, electrical resistivity, and resonance frequencies. The present work employs data science techniques to find the correlation values between the NDTs and the compressive strength effort and realized broad numerical exploration about concrete performance. An amount of 285 specimens of concrete were monitored during this research. The model proposed contains 600 neurons and uses a Rectified Linear Unit and Sigmoid as activation functions where the NDTs were established as the input data. The dataset was segmented into two groups: train and test. In order to evaluate the model, the authors tested it in a validation set with different concrete features, achieving an accuracy of 94%.

DOI:

10.14359/51734315


Document: 

SP-350_04

Date: 

November 1, 2021

Author(s):

Mohammad H. AlHamaydeh, Ahmed F. Mohamed, and Mahmoud I. Awad

Publication:

Symposium Papers

Volume:

350

Abstract:

Structural systems are critical components of modern societies, and as such, need constant condition assessments. Incurred damage and its accumulation due to various loading conditions may lead to complete structural failures with safety consequences. Thus, damage assessment and early fault detection are essential to decision-makers for strategic planning, performing resource-allocation, and obtaining the logistics of these systems. In this article, a data-driven methodology using fault detection of structural systems is proposed. This method utilizes Artificial Neural Networks (ANNs) to model damage due to earthquake loading using sophisticated nonlinear analyses of structures. As a proof-of-concept, the ANN approach for damage-detection is applied to a typical four-story reinforced concrete (RC) structure having varied concrete strengths. The approach is found to have a high potential for successful anomaly identification in RC structural systems.

DOI:

10.14359/51734311


Document: 

SP-350_07

Date: 

November 1, 2021

Author(s):

Vitaliy V. Degtyarev

Publication:

Symposium Papers

Volume:

350

Abstract:

The bond between reinforcing bars and concrete is an important property that determines the performance of reinforced concrete structures. Accurate prediction of the bond strength is essential for ensuring the safety and economy of the structures. This paper proposes an artificial neural network for predicting the bond strength between straight deformed reinforcing bars and concrete under tensile load. The neural network was trained using a large dataset of test results from the ACI Committee 408 database. A robust ten-fold cross-validation method was employed for evaluating network performance and finding optimal network parameters. Hyperparameter tuning was carried out to establish the optimal network hyperparameters. The relative impact of the neural network input parameters on the bond strength was evaluated using the SHAP method. The developed neural network with the optimal hyperparameters shows a good agreement with the test results. Its accuracy exceeds the accuracy of the descriptive equations.

DOI:

10.14359/51734314


Document: 

SP-350_11

Date: 

November 1, 2021

Author(s):

Ranjit Kumar Chaudhary, Ruben Van Coile, and Thomas Gernay

Publication:

Symposium Papers

Volume:

350

Abstract:

The probabilistic study of fire exposed structures is laborious and computationally challenging, especially when using advanced numerical models. Moreover, fragility curves developed through traditional approaches apply only to a particular design (structural detailing, fire scenario). Any alteration in design necessitates the computationally expensive re-evaluation of the fragility curves. Considering the above challenges, the use of surrogate models has been proposed for the probabilistic study of fire exposed structures. Previous contributions have confirmed the potential of surrogate models for developing fragility curves for single structural members including reinforced concrete slabs and columns. Herein, the potential of regression-based surrogate models is investigated further with consideration of structural systems. Specifically, an advanced finite element model for evaluating the fire performance of a composite slab panel acting in tensile membrane action is considered. A surrogate model is developed and used to establish fire fragility curves. The results illustrate the potential of surrogate modeling for probabilistic structural fire design of composite structures.

DOI:

10.14359/51734318


Document: 

SP-350_02

Date: 

November 1, 2021

Author(s):

Muneera Aladsani, Henry Burton, Saman Abdullah, and John Wallace

Publication:

Symposium Papers

Volume:

350

Abstract:

Many modeling approaches in engineering are based on physical principles. The input and output relationships are developed using physical laws (e.g., Newton's laws of motion and conservation of mass and energy). However, in many situations, the development of physically-based models requires simplifying assumptions due to the complicated nature of the systems, which could lead to a large degree of uncertainty. In these situations, data can be used to formulate models by detecting relationships between the system’s variables (inputs and outputs) without explicitly knowing the physical behavior of the system. Therefore, there is a paradigm shift from physically-based models to data-driven models. The objective of this study is to develop a drift capacity prediction model for structural walls with special boundary elements using the extreme gradient boosting (XGBoost) machine learning algorithm. The resulting prediction model is compared with the recently developed empirical model presented in literature i.e., the Abdullah & Wallace (2019) model. The results reveal the proposed model’s superior predictive capabilities relative to the empirical model.

DOI:

10.14359/51734309


1234

Results Per Page