ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 15 Abstracts search results

Document: 

SP268-07

Date: 

March 1, 2010

Author(s):

T. Atkinson and P. C. Tatnall

Publication:

Symposium Papers

Volume:

268

Abstract:

This paper discusses the recent tragedies of a number of tunnel fires occurring in transport tunnels, and the effects of these fires on concrete tunnel support linings. The mechanisms of explosive spalling of concrete in fires is described, and the research conducted to assess the ability of fine, polypropylene fibers to mitigate the effects of explosive spalling in severe fires is described. The test program to assess the fire resistance of the 25 miles (40 km) of concrete-lined tunnels in the Channel Tunnel Rail Link project in the United Kingdom is described in detail. A program to ascertain the effects of using these fibers in shotcrete tunnel linings is also considered. These programs demonstrate that small quantities – as little as 1.7 lb/yd3 (1 kg/m3) – of mono-filament polypropylene fibers provide resistance to explosive spalling in fires. Examples of the application of this new technology are listed.

DOI:

10.14359/51663710


Document: 

SP268

Date: 

March 1, 2010

Author(s):

Editors: Ashish Dubey and Nemkumar Banthia / Sponsored by: ACI Committee 549 and ACI Committee 544

Publication:

Symposium Papers

Volume:

268

Abstract:

This CD-ROM consists of 14 papers that were presented at ACI conventions in Charlotte, NC,and Denver, CO, in 2006. Selected examples of FRC applications highlighted in this special publication include slab-on-ground, jointless slabs, thin section composites, prefabricated modular housing elements, concrete buried structures, concrete infrastructure repair, fire-resistant concrete, decorative concrete, and shotcrete. Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-268

DOI:

10.14359/51663584


Document: 

SP268-03

Date: 

March 1, 2010

Author(s):

J. Jones

Publication:

Symposium Papers

Volume:

268

Abstract:

Glass fiber-reinforced Concrete (GFRC) has now been in use worldwide for over 30 years. There are many varied applications for this composite material and this paper describes four specific applications that illustrate the benefits that GFRC offers to the construction industry.

DOI:

10.14359/51663706


Document: 

SP268-10

Date: 

March 1, 2010

Author(s):

R. Gupta, N. Banthia, and P. Dyer

Publication:

Symposium Papers

Volume:

268

Abstract:

Water loss from concrete results in volumetric shrinkage, which is significant at early ages. This shrinkage is particularly pronounced when the surface to volume ratio is large of the placements. Fibers, especially synthetic fibers are known to reduce cracking induced due to restrained plastic shrinkage. However, few studies have been conducted to monitor the early-age shrinkage of fiber reinforced concrete (FRC) using embedded sensors in the field. This study involved developing crack resistant FRC material in the laboratory using the bonded overlay technique developed at UBC and using it for a field project. Results from a plain concrete slab-on-grade section and a high volume fly-ash placement were used for comparison with fiber-reinforced concrete (FRC). Three sections were cast using synthetic fiber and their performance was monitored by reading strain signals from embedded sensors. Both traditional (electrical) and state of the art optical sensors were used. Optical sensors registered low strain values due to lack of bond with concrete. On the contrary, traditional electrical sensors clearly demonstrated the reduction in strain in FRC when compared to plain and fly-ash concrete. Specimens were cast on site for conducting tests in the laboratory. In addition, nondestructive tests were conducted on-site for monitoring performance of the slabs. These results are also presented in this paper.

DOI:

10.14359/51663713


Document: 

SP268-08

Date: 

March 1, 2010

Author(s):

E. Alexandre and B. Bouhon

Publication:

Symposium Papers

Volume:

268

Abstract:

Most maintenance problems associated with industrial concrete floors result from the joints. This paper emphasizes a method to eliminate saw-cut joints in slabs-on-grade by the use of steel fiber reinforced concrete (SFRC) only. The performance of the composite material is directly linked with the choice of a specific concrete mix design and an improved technique to uniformly mix a high dosage of steel fibers. Tests and experience have shown that high level post-cracking ductility of the SFRC can control micro-cracking caused by flexural and shear stresses combined with restrained shrinkage. The proposed design approach, based on the yield-line theory, gives an objective view of the safety factor in relation to the ultimate state. Case studies demonstrate that typical areas of 25,000 ft² (2322 m²), without saw-cut joints, are regularly achieved by experienced contractors with relevant site quality control. Practical site aspects such as armored contraction joints, slab details, aspect ratio, installation techniques etc., are an integral part of the case study as well. The second part of this paper details the use of this technique for structural applications such as suspended slabs on piles and mat foundations. To demonstrate the structural capacity of concrete solely reinforced with a high dosage of steel fibers, real scale tests and practical case studies are presented.

DOI:

10.14359/51663711


123

Results Per Page