ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 18 Abstracts search results

Document: 

SP162-09

Date: 

August 1, 1996

Author(s):

J. A. Pincheira, R. M. Jordan, M. E. Kreger, and J. O. Jirsa

Publication:

Symposium Papers

Volume:

162

Abstract:

Research on rehabilitation of nonductile reinforced concrete structures located in zones of high seismic risk has been underway at the University of Texas at Austin since 1981. A sampling of details and results from selected experimental programs investigating repair and strengthening of reinforced concrete nonductile frame buildings is presented. Researchers at the University of Texas have integrated knowledge about the behavior of nonductile elements and systems, retrofitted members, subassemblages, and superassemblages into nonlinear time-history analysis models. These models have been used to investigate the response of buildings, retrofitted with techniques studied in the laboratory, to a variety of strong-motion earthquake records. An overview of some of the analytical modeling is presented; results from two studies investigating the use of different concentric bracing schemes or infill wall systems to retrofit a three-story nonductile frame building are discussed.

DOI:

10.14359/1513


Document: 

SP162-15

Date: 

August 1, 1996

Author(s):

L. E. Garcia and J. F. Bonacci

Publication:

Symposium Papers

Volume:

162

Abstract:

An evaluation of the implications of the structural system selected for reinforced concrete buildings with three different plan layouts and four different heights (5, 10, 15, and 20 stories) was performed as part of the calibration of the update of the Colombian Seismic Code (10). The buildings had varying amounts of structural walls. In total, 72 buildings were studied. Expected performance of the buildings under the code design earthquake was evaluated using elastic and inelastic procedures. Using the amount of concrete and reinforcing steel for all the buildings and prevalent material and labor prices, a cost of the structure per unit area was determined. Conclusions with respect to behavior and cost implications were obtained for the parameters studied for the different buildings.

DOI:

10.14359/1520


Document: 

SP162-17

Date: 

August 1, 1996

Author(s):

J. K. Wight, S. L. Wood, J. P. Moehle, and J. W. Wallace

Publication:

Symposium Papers

Volume:

162

Abstract:

Following the strong earthquake in Chile on March 3, 1985, an intensive study was conducted to ascertain why the large inventory of moderate rise buildings in the coastal city of Vina del Mar performed so well during the earthquake. The major findings were that the vast majority of the buildings in this coastal city had a high wall area to total floor area ratio and that the reinforcement detailing in the boundaries of these walls were considerably less than required by U. S. codes. Analytical studies indicated that the high percentage of walls led to significantly lower drifts under severe seismic shaking, thus lowering the ductility demands on the walls. At lower levels of ductility demand, experimental results have demonstrated that wall boundaries did not need special detailing of transverse reinforcement. The findings from the series of research studies following the Chilean earthquake have led to modified U. S. design procedures that relate the need for special detailing in wall boundary elements to expected strain levels along the compression edge of the wall. The expected strain levels are determined based on the aspect ratio of the wall and the percentage of wall area to floor area used in the building.

DOI:

10.14359/1523


Document: 

SP162-16

Date: 

August 1, 1996

Author(s):

S. L. Wood and C. Sittipunt

Publication:

Symposium Papers

Volume:

162

Abstract:

Presents a conceptual model for the behavior of structural walls subjected to lateral load reversals. The primary feature of the model is a reduction in shear strength with increasing levels of deformation. Measured and calculated data from structural walls are evaluated to determine conditions for which the strength and deformation capacity of a wall may be limited by the residual shear strength.

DOI:

10.14359/1428


Document: 

SP162-03

Date: 

August 1, 1996

Author(s):

P. Gulkan and A. Yakut

Publication:

Symposium Papers

Volume:

162

Abstract:

Objective evaluation of structural damage in buildings which have been subjected to strong ground motions is an undertaking in which expert knowledge and the ability to process correlated but fuzzy information in a consistent way must be blended. Often, in the immediate aftermath of earthquakes, field data is collected by survey teams whose expertise is variable. The use of knowledge-based systems capable of reaching an unequivocal decision on the damage state of a given building on the basis of queries arranged in a consistent hierarchical order would remove human subjectivity. This paper describes the internal design of an expert system called EPEDA, which is used as a tool for making a numerical ranking of damage in reinforced concrete buildings. Damage to individual elements is quantified on the basis of severity, relative member importance, and number of affected elements. Factors contributory in nature to the damage are summed with this score, as are scores expressing the overall system vulnerability. The final score is expressed as a number ranging from zero to 100. An example case is worked out to illustrate how the system works.

DOI:

10.14359/1423


1234

Results Per Page