ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 11 Abstracts search results

Document: 

SP146

Date: 

June 1, 1994

Author(s):

Editor: P. Balaguru

Publication:

Symposium Papers

Volume:

146

Abstract:

SP-146 Since the use of asbestos fibers is totally banned in the industrialized countries and discouraged in almost all countries, a large number of researchers around the world are working to obtain a replacement. Various forms of fabrics, meshes, and discrete fibers made of metal, mineral, polymeric, and naturally occurring materials have been investigated.

DOI:

10.14359/14186


Document: 

SP146-10

Date: 

June 1, 1994

Author(s):

J. D. Worner and M. Muller

Publication:

Symposium Papers

Volume:

146

Abstract:

A methodology is presented that allows calculation of plain and fiber reinforced concrete for moments and normal forces. The developed procedure is a simple method to derive the internal forces, crack width, effective stiffness, and toughness. The basis for verification of the proposed analytical procedure comprises broad parametric experimental studies that include variations of the fiber diameter, fiber length, fiber content, and depth of the specimen. Interaction diagrams are given for practical use.

DOI:

10.14359/4591


Document: 

SP146-02

Date: 

June 1, 1994

Author(s):

P. Balaguru

Publication:

Symposium Papers

Volume:

146

Abstract:

Results of an experimental investigation on the behavior of a cement composite reinforced with short (micro) fibers are presented. The primary response variable was flexural behavior measured in terms of modulus of rupture and toughness index. The independent variables were fiber content, addition of silica fume, cement, sand ratio, specimen size, and casting procedure. Most of the specimens were cast using a shotcreting process. The results indicate the following trends. The microfibers can be used to increase flexural strength in rich cement mortars. The fibers do not provide significant strength increase, but do provide improved ductility. The addition of silica fume improves the fiber performance. Fibers are more effective in thinner sections. The author believes that the properties of the composite can be considerably improved by removing the excess water and entrapped air by applying external pressure during the manufacturing process.

DOI:

10.14359/4322


Document: 

SP146-01

Date: 

June 1, 1994

Author(s):

D. M. Gale

Publication:

Symposium Papers

Volume:

146

Abstract:

Since the turn of the century, thin-section asbestos-cement sheet and pipe products have been manufactured. Health and environmental concerns regarding the use of asbestos have led to a worldwide search for alternative fibers. Paper reviews the state of the art in using synthetic fibers to replace asbestos in fiber-cement products.

DOI:

10.14359/4614


Document: 

SP146-06

Date: 

June 1, 1994

Author(s):

H. J. Molloy, J. Jones, and T. G. Harmon

Publication:

Symposium Papers

Volume:

146

Abstract:

Presents results of a development program to improve the properties of glass fiber reinforced concrete (GFRC). The current system is composed of portland cement, silica sand, 5 percent alkali-resistant glass, curing agent (5 percent acrylic copolymer solids by weight of cement), and a water-cement ratio of 0.32. Historically, this system has resulted in loss of some ductility due to the development of calcium hydroxide, which bonds the individual filaments together in the strand, reducing their reinforcing efficiency. A new system was developed to improve the performance of the composite. This system is composed of rapid-hardening hydraulic cement, silica fume, and additives to combine with any free lime, provide enhanced workability, and a degree of retardation, using a water-cement ratio of 0.45 and 5 percent alkali-resistant glass containing 20 percent zirconium oxide. Polymer curing agents are not recommended. The durability of the system was tested using the glass industry test of immersing the product in hot water (60 C) for up to 100 days and periodically measuring the flexural strength and strain capacity using ASTM C 947-89. Analysis of the results indicates a very high retention of both flexural strength and strain capacity for the new system, after being exposed to the hot water aging test.

DOI:

10.14359/4323


123

Results Per Page