ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 17 Abstracts search results

Document: 

SP133

Date: 

September 1, 1992

Author(s):

Editors: Edward G. Nawy and Andrew Scanlon

Publication:

Symposium Papers

Volume:

133

Abstract:

SP-133 Design for serviceability and safety is central to the work of structural engineers, code-writing bodies and the users. The current era of high strength materials, exotic additives and limit states of design has necessitated better control of constructed facilities in their short and long-term behavior at service load and at ultimate load. This Special Publication concentrates on topics that give the design engineer and contractor an insight into how to avoid practices that could affect the integrity or long-term performance of structural elements and systems. The text is outgrowth of a national symposium of the American Concrete Institute co-sponsored by ACI Committees 348 and 435, and covers topics ranging from crack-control in reinforced and prestressed concrete, safety provisions in design codes and practical deflection computations to limit state design principles and seismic performance of frame structures. Several papers that could not be presented due to time limitations are included. The papers dealing with serviceability, highlight requirements of the ACI Codes and Reports in addition to relevant state of the art developments. The paper covering safety deal with issues ranging from philosophical discussions of treatment of safety in codes to project case studies. Overlap is expected since serviceability and safety are indivisible. All the papers presented in this publication were reviewed by recognized xperts in accordance with the ACI review procedures. It is hoped that designer, constructors and codifying bodies will be able to draw on the material presented in improving the safety and long-term cracking and deflection behavior of concrete constructed facilities.

DOI:

10.14359/14165


Document: 

SP133-06

Date: 

September 1, 1992

Author(s):

Andrew Scanlon and Libanio Pinheiro

Publication:

Symposium Papers

Volume:

133

Abstract:

The treatment of design for deflection control in current practice is empirical, and relies largely on allowable computed deflections that were established on the basis of experience gained at a time when deflection control was not a critical issue in most cases. In this paper the current deterministic approach to deflection control is compared with design for safety, which is based on probability considerations.

DOI:

10.14359/3154


Document: 

SP133-09

Date: 

September 1, 1992

Author(s):

Shivaprasad T. Kudlapur and Edward F. Nawy

Publication:

Symposium Papers

Volume:

133

Abstract:

Studies are limited on the early age performance of high-strength cold weather concretes and their shear strength interaction in cold weather. This paper presents shear transfer strength characteristics between regular high-strength concrete and (i) methyl methacrylate-based polymer concrete and (ii) magnesium phosphate based concrete in subfreezing temperatures. Analytical expressions were developed based on shear transfer hypothesis and verified by experimental results. The experimental study included tests on cylinders and L-shaped push off specimens to determine the early age shear interlock and shear frictional resistance between high-strength regular portland cement concrete and cold weather high-strength concretes as is experienced in rehabilitation of bridge decks and other infrastructure systems. Studies indicated that at early age of 24 hours, shear transfer strength of 1400 psi can be obtained with the use of appropriate material and shear reinforcement. The study also indicated the ACI 318-89 code limits on the shear-friction strength are too conservative even at early ages for high-strength cold weather concretes.

DOI:

10.14359/2872


Document: 

SP133-11

Date: 

September 1, 1992

Author(s):

Alex Aswad

Publication:

Symposium Papers

Volume:

133

Abstract:

A procedure for rational prediction of deformation in pretensioned members is described. Full-scale load tests on stemmed members spanning 30 to 62 ft (9.2 to 18.9 m) were conducted by the author. They showed good correlation with the proposed predictions. Actual deflections were generally less or close to the computed values. It is suggested that the method may be used for loads not exceeding a certain ratio of the ultimate loads.

DOI:

10.14359/2888


Document: 

SP133-13

Date: 

September 1, 1992

Author(s):

C. C. Fu , J. Colville, and D. R. Schelling

Publication:

Symposium Papers

Volume:

133

Abstract:

Purpose is to present a lesson learned from the findings of the Governor Thomas Johnson Memorial Bridge, Maryland. The bridge has an overall length of 7205 ft, with 59 spans. Thirty-eight piers are made of concrete hammerhead-type pier caps with different height and cap sizes. The cracks observed on the deep water piers initiated the evaluation of these hammerhead-type pier caps. The structural integrity was questioned and several analysis procedures were taken on this case. Extensive computer analyses, including nonlinear finite element analyses were conducted. This paper also intends to depict the implementation of the Code, design methodology, and calculation procedures concerning this type of pier for engineering practices. Finally, the remedial strengthening method using the post-tensioning system is presented.

DOI:

10.14359/2894


1234

Results Per Page