ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 22 Abstracts search results

Document: 

SP124

Date: 

September 1, 1990

Author(s):

Editors: J.I. Daniel and S.P. Shah / Sponsored by: ACI Committee 544 and ACI Committee 549

Publication:

Symposium Papers

Volume:

124

Abstract:

Thin-section fiber reinforced concrete is portland cement concrete or mortar reinforced with dispersed, randomly oriented discrete fibers. Fibers can be metal (low carbon or stainless), mineral (glass or asbestos), synthetic organic (carbon, cellulose, or polymeric), or natural organic (sisal). Fiber lengths can range from 1/8 inch to 2-1/2 inches. Furthermore, many existing thin fiber-cement composites on the market today comprise a blend of different fiber types. By ACI's definition, ferrocement is portland cement mortar reinforced by the number of very closely spaced layers of continuous fiber networks or meshes. Ferrocement can be manufactured with any of the fiber types mentioned above, even though its name might imply steel wire meshes. ACI Committee 544 and 549 organized international symposiums to address the many thin-section fiber-cement building products available the world or under development. SP-124 contains papers presented at symposiums in Atlanta, Feb. 1989 and in San Diego, Nov. 1989. Note: The individual papers are also available as .pdf downloads.. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP124

DOI:

10.14359/14156


Document: 

SP124-21

Date: 

September 1, 1990

Author(s):

Morris Schupack

Publication:

Symposium Papers

Volume:

124

Abstract:

The background to the development of two types of thin, fabric-reinforced, portland cement concrete sheets is described and range of properties given. Both normal weight and lightweight mortars (including cellular mortars) were used as a matrix. Glass or synthetic fiber continuous reinforcement in the form of fabric scrims and/or nonwoven three-dimensional fabric were used. The materials developed are potential substitutes for plywood, cement asbestos, and other types of sheet material that require the properties of weather resistance, incombustibility, nonbiodegradability, and economy. The test results also suggest that the matrix and reinforcement concepts developed will lead to applications in other reinforced concrete uses. The thin sheet materials lend themselves to easy manufacture in a comparatively simple plant.

DOI:

10.14359/2333


Document: 

SP124-12

Date: 

September 1, 1990

Author(s):

I. R. K. Greig

Publication:

Symposium Papers

Volume:

124

Abstract:

The inherent light weight, toughness, low permeability, smooth surface finish and resistance to shrinkage cracking have all contributed to GFRC being an attractive alternative to traditional materials in the following areas of mining: 1) stabilization of rock tunnels by in situ spraying of thin skins; 2) construction of ventilation stopping walls both by a surface bonding technique and as a direct substitute for simple lime and sand mortars; 3) fire protection of timber packs by lightweight GFRC renders with improved adhesion and impact strength; 4) manufacture of drainage channels which are lighter in weight than their concrete counterparts and tougher than the asbestos cement alternatives; and 5) production of permanent formwork, which is lighter in weight and has a better surface finish than concrete and is much more efficient than the use of temporary shuttering.

DOI:

10.14359/3350


Document: 

SP124-16

Date: 

September 1, 1990

Author(s):

T. P. Tassios and V. Karaouli

Publication:

Symposium Papers

Volume:

124

Abstract:

A simplified analytical procedure is proposed to predict stress-strain diagram of ferrocement composites under tension. A fracture mechanics approach is used to predict the load at first cracking. Results of a limited experimental investigation are also shown and used to evaluate the analytical model. The influence of curing is also demonstrated experimentally.

DOI:

10.14359/2814


Document: 

SP124-01

Date: 

September 1, 1990

Author(s):

Kenneth D. Vinson and James L. Daniel

Publication:

Symposium Papers

Volume:

124

Abstract:

Describes the investigation of a new range of cellulose fibers suited to the reinforcement of a portland cement matrix. This investigation indicated that fibers selectively derived from high-density summerwood are better suited for reinforcement than is the unmodified pulp that contains a large measure of fibers derived from springwood as well as summerwood. Another cellulose fiber material, termed expanded fiber because of its finely fibrillated microstructure, was indicated to have potential as a processing aid. Expanded fiber displayed excellent suspending and retention properties and imparted relatively high uncracked strength to finished composites. Overall, substantial performance differences were observed comparing, tests on wet versus dry specimens and the long-term durability was not evaluated. Despite these limitations, flexural stress/strain performance of the cellulose reinforced composites compared quite well to asbestos and glass fiber reinforced composites. The cellulose composites had substantially more ductility than asbestos cement; in this regard, the load-deflection curve was similar to glass reinforced cement.

DOI:

10.14359/2230


12345

Results Per Page