The 2011 Award Winners

BEST IN CLASS WINNERS

IN THIS ISSUE - DECEMBER 2011

Since 1989, the Brick in Architecture Awards have been one of the most prestigious national architectural award programs featuring clay brick. Architecture firms from around North America enter their best projects to be judged by a jury of their peers.

This year, architects from around the United States independently reviewed and scored each of the entries. Based on the aesthetic and creative use of brick in meeting the aesthetic and functional design challenges, the Brick Industry Association is pleased to showcase the following projects which were chosen as the Best in Class in their respective categories.
Montana State Fund Building and Parking Garage
Helena, Montana

Brick Brings Color to Big Sky Country

When the Montana State Fund needed to consolidate the operations from three existing leased buildings to a single facility, they worked closely with the City of Helena to identify a site that would keep the facility located downtown.

Early in the process, the architects established a series of guiding design principles for the new Montana State Fund Building and Parking Garage. First and foremost, the team sought to deliver a high-quality building that expresses strength and stability while reflecting its Montana surroundings. They also wanted a facility that could accommodate future growth. Lastly, they needed to design a contemporary building that was suitable to the scale and proportion of downtown Helena.

The use of clay brick and color played a key role in the building's design, and the architects used color in a way that breaks up the expanses of wall into smaller interlocking volumes. By using two different shades of the same type of brick, the design team achieved the desired layered complexity, while maintaining a consistent bond pattern throughout.

A dry-pressed brick provided the appropriate color and texture as outlined in the design goals, and it also helped the project achieve the regional material credit for LEED® certification. Given the durability of brick, it also helped provide the image of the permanence and stability required by Montana State Fund.

In the end, the Montana State Fund Building achieved LEED Gold certification. The building stands as a leading example of sustainability for the State of Montana as well as the many business partners of the Montana State Fund.
Terasaki Life Science Building at UCLA
Los Angeles, California

UCLA Makes a Seismic Shift While Maintaining Traditional Brick Heritage

As part of UCLA’s massive renovation and replacement building program, the University has pledged to upgrade the seismic safety of its facilities. This was especially important for the 178,000-square-foot Terasaki Life Sciences Building, which plays a prominent role by presenting a public face to the surrounding community. The building is comprised of two seismically separate, five-story wings that each house an efficient pattern of flexible, modular, and open laboratory, support, and office space.

UCLA’s campus has a rich tradition of brick architecture in the Northern Italian Romanesque style. To match this aesthetic, seven colors of brick were used in bands, bond patterns, and relief in the traditional UCLA brick blend of rose tan, red, dark red, purple, and peach. Extensive brick patterning, reveals, and detailing accentuate functional and aesthetic details. For example, shadow lines and special brick courses accent window placement patterns, enhancing Terasaki’s relationship to the older brick buildings nearby.

Adjacent to historic Mira Hershey Hall, Terasaki pays tribute to the older building’s site, materials palette, and scale. The building’s use of a concrete frame as a shear wall eliminates 10 feet in height, opens the perimeter to light, creates new views, and provides inherent vibration control. Brick animates the façades with texture and pattern, creating shadows that contribute to the overall composition.

In response to a rigorous seismic engineering study that mapped force potential on the building’s structure, the architects created a carefully calibrated layout of brick anchors placed behind the veneer. The anchor system controls differential movement between skin and structure, permitting varied movement across the façade in response to specific forces.

The project is currently in the process of obtaining LEED Silver certification. The architects used locally manufactured materials whenever possible, and all the brick used in the project was locally produced.

Architect: Bohlin Cywinski Jackson
Associate Architect: Bohlin Cywinski Jackson Architects
Builder: UGI Construction Services, Inc.
Mason Contractor: Masonry Concepts, Inc.
Photographer: David Luna Photography
Methodist Le Bonheur Women’s and Children’s Pavilion
Germantown, Tennessee

New Health Care Facility Turns a Brownfield into LEED Gold

Guided by sustainable principles and the need for a dedicated women's center, the Women's and Children's Pavilion expands the current facilities at Methodist Germantown and sets the standard for all future facilities within the Methodist Healthcare System. Designed to achieve a LEED Gold rating, it is the largest LEED-certified facility in the Mid-South Region and the first LEED Gold health care facility in the region.

In addition to the LEED requirements, the facility adhered to Germantown's strict aesthetic guidelines and sought to blend in with the existing architecture of the campus. Therefore, scale, material, and building forms were all taken into account during the design process. Clay brick quickly became the exterior cladding material of choice in order to produce a cohesive design aesthetic and to relate to pedestrians with its small-scale units. The pavilion features articulated and carefully proportioned brick façades, residential-scaled windows, and metal standing seam hip roofs with eaves—all elements incorporated with the surrounding residential aesthetic in mind.

As noted, LEED Gold certification played a dominant design role, and the brick exterior was a contributing design element by helping add points for energy efficiency. In addition, a manufacturer less than 500 miles away supplied the brick—a sustainable move that contributed to an innovation credit of exemplary performance for regional materials. Finally, the architects took advantage of a Brownfield site in an urban setting and recycled 90 percent of the construction waste.
Tampa, Florida
Sykes Chapel at University of Tampa

Casual Attention to Details Transforms Brick Chapel Into Space of Inspiration

Tampa, Florida
Village of Wheeling, IL, Fire Station 24
Wheeling, Illinois

Brick Creates New Fire Station on Budget and in Style

Surrounded by commercial and residential properties, the Village of Wheeling’s Fire Station 24 encompasses a sizable 16,000 square-foot facility. The architects designed the facility to not only be a full-service fire station supporting the busy village of Wheeling, but to also provide living quarters for up to 12 firefighters who serve there.

The City of Wheeling wanted its firefighters focused on fighting fires and serving the community, so the City put a priority on designing a building that would require little maintenance, would protect the firefighters from noise, and could withstand the harsh weather. Careful attention was also paid to the building’s exterior cladding to ensure that there was a seamless appearance with the surrounding architecture.

From the beginning, the client set a goal of designing a Prairie-style facility. Under this direction, the architects specified brick extensively for the facility due to the fact that brick’s inherent qualities of warmth, solidity, and beauty dovetail well into the Prairie style. Brick’s sustainable attributes and cost-effective qualities allowed the project to meet all of the fire department’s functional needs while remaining on budget.

The weather posed one of the design team’s biggest challenges. To remain on schedule, the masonry work had to be completed during the winter months 30 miles outside of Chicago. By enclosing the scaffolding and using portable heaters, the builders were able to complete the exterior masonry on schedule.

The architects’ decision to use brick was essential to the project’s ultimate success. The community quickly embraced their new brick firehouse and approved of its beauty and durability. Upon completion, the citizens of Wheeling felt assured that the new firehouse would serve its citizens for decades to come.
PNC Triangle Park
Pittsburgh, Pennsylvania

Clay Brick Pavers Transform a Small City Park into a Natural Urban Oasis

As the first new high-rise building in downtown Pittsburgh in 20 years, PNC Financial Services Group erected a Gold LEED-certified building that has become the signature green building for a company that has the most LEED-certified properties of any company in the world. Situated at its prominent front corner is the PNC Triangle Park.

This small triangular park is just over 10,000 square feet and provides a passive setting that not only serves as a public amenity but also as an extension of the company's corporate campus. From the pedestrian's perspective, the spine of the park and welcoming seating area under a custom shade structure lead the eye to the building's entrance.

The public park exploits a forced perspective to make the park look larger when viewing it from the building entry. Linear patterns with increased spacing pull the pedestrian's eye into the park, and the long, narrow boardwalk clay pavers amplify this linear concept.

By using a pattern of three colors where at least three pavers in the same color are laid in a row, an elegant, elongated pattern is achieved. The colors of the pavers enhance the metal, concrete, and building materials. In short, the pavers tie the campus' ornate palette together.

The use of the clay brick in the center of the triangular park adds texture and rich color that will never fade. In addition, the quality of the material reflects the elegance of the building and makes the visitor feel like they've escaped from the busy city sidewalks.

To strengthen the park's sustainability, the architects employed a permeable brick pavement to reduce the amount of storm water run-off from more impervious hardscape surfaces. They were sourced from local origins, and their durability will ensure that the park endures for generations to come.
The Veridian
Silver Spring, Maryland
A Brick Homage to Art Deco Style Proves Popular in Urban Setting

Situated in an emerging neighborhood and adjacent to a historic plant, the Veridian derives its form and choice of materials from the area’s Art Deco/Art Moderne heritage and the formerly industrial district.

The apartment complex’s primary elevation takes the form of a curve, echoing a nearby industrial plant’s rounded front, and is recessed at regular intervals to provide balconies. The curve also has the added benefit of creating a large public plaza whose space energizes the streetscape and the building’s ground level retail. The abundant use of orange-toned clay brick is one of the building’s signature elements.

The architects chose a sophisticated palette of materials for the large apartment building, including a custom orange brick blend and a polychrome brick in 12-inch sizes. Given its large mass, the design team used a longer-than-standard brick to reinforce the horizontal lines. This larger, 12-inch brick also proved helpful in reaching the project’s cost goals without having to resort to other materials.

Few people realize the multiplicity of colors, textures, and sizes that are available in clay brick. For projects on a tight budget, brick’s variety of colors and sizes gives the walls a pleasing visual depth while maintaining costs. By using brick on both the building’s exterior as well as on the large plaza’s main hardscape, the design teams successfully anchored the building to the site.

Brick—when paired with metal accents—lends itself to today’s fashionable urban industrial aesthetic and is a popular style for young professionals seeking apartment living in an urban environment.

But brick is more than the style of the day. Brick provides a bridge between the past, present, and future. Unlike other materials, brick’s enduring timelessness lends itself to a sense of authenticity and permanence.
Pierce/Lee House
Cedartown, Georgia

170,000 Brick, 100 Structural Arches, Walls Three Brick Deep Make One Exceptional Home

The beauty of the Pierce/Lee house lies in its materials. Constructed almost entirely of structural clay brick masonry, the house demonstrates both the versatility of brick and the honesty of materials like few other buildings conceived and constructed in recent history.

The 3,500-square-foot house sits gracefully atop a small mountain in Georgia. The two-story house's exterior walls are three brick thick (12 inches) with interior walls two brick thick (8 inches). In addition, more than 100 structural arches span the openings of all windows, doors, and vaults throughout the home. By the end of construction, nearly 170,000 engineered modular brick were used.

The defining aspect of this design is that it is not replica-based or created from standard plans. While some may immediately assume that such custom craftsmanship would be cost prohibitive, both the human and material resources required for brick construction are a fraction of the cost for the less durable materials typically found in a conventional stick-built house.

Seen from the designer's perspective, the rule of thumb applicable in their area is that one cubic foot of structural masonry costs approximately $25.00 to build. For a 12-inch thick masonry wall, this cost can be measured in square feet—6-inch walls would be 2/3 of this. This approach to building makes obsolete the processes of framing, insulating, painting, and in many cases, trim. Therefore, the man hours and costs to manage the labor, logistics, and financing of these various elements are no longer required.

Finally, the projected lifespan of the house, which can be quantified in centuries rather than decades, has important sustainability and energy efficiency implications. The thermal mass of the brick structure and the partial sub-grade orientation of the terrace level account for significant heating and cooling advantages.

The end result is an honest structure, one that is made richer with age and can gracefully wear the passage of time. From aesthetics to functionality, nothing does what brick does so well.
The 2011 Brick in Architecture Award Winners

PAVING & LANDSCAPE ARCHITECTURE

The Plaza at Kenan Hall/Fлагler College
Location: St. Augustine, Florida
Landscape Architect: Hauser Fowler & Associates, LLC
Builder: A.D. Davis Construction
Manufacturer: Pine Hall Brick Company, Inc.
Distributor: Oldcastle Coastal - Jacksonville
Mason Contractor: Paverscape Inc.

RESIDENTIAL — MULTI-FAMILY

Roscio C Brown Apartments
Location: Bronx, New York
Architect: Melzer Mandl Architects
Builder: Mega Contracting
Manufacturer: Glen-Gary Corporation
Mason Contractor: Flagge Contracting

RESIDENTIAL — SINGLE FAMILY

French Manor Home
Location: Winnetka, Illinois
Architect: Melcher Architects
Builder: Tiedemann Enterprises
Manufacturer: Redland Brick Inc.
Distributor: Illinois Brick Company
Mason Contractor: Fontana Masonry

BRONZE WINNERS

COMMERCIAL

BB&T Ballpark
Location: Winston-Salem, North Carolina
Architect: C&M Architects
Landscape Architect: Stimmel Associates, PA
Associate Architect: 360 Architecture
Builder: Samet Corporation
Manufacturer: Pine Hall Brick Company, Inc.
Mason Contractor: Proftt Brick & Stone Work Inc.

Raleigh Convention Center
Location: Raleigh, North Carolina
Architect: O'Brien Atkins Associates,
FA and Cleanskapes, &
FA in association with TVS Design
Mason Contractor: Brodie Contractors, Inc.

EDUCATIONAL

Barton College Studio Theater
Location: Wilson, North Carolina
Architect: Pearce Brinkley Geasey + Lee
Manufacturer: Taylor Clay Products Company
Distributor: Custom Brick Company, Inc.
Mason Contractor: M. C. Masonry

GSM Wellness Center
Location: Leonardtown, Maryland
Architect: Griffin + Parker Architects
Manufacturer: Redland Brick inc.
Distributor: Potomac Valley Brick & Supply Company
Mason Contractor: Guy & Guy Masonry

Hopkins School, Thompson Hall
Location: New Haven, Connecticut
Architect: The S/L Architects
Manufacturer: General Shale Brick, Inc. &
Redland Brick Inc.
Mason Contractor: Seidman J. Damata Masonry

MIT Ashdown House Graduate Student Housing
Location: Cambridge, Massachusetts
Builder: Davis Lend Lease
Manufacturer: Glen-Gary Corporation
Distributor: Speckling Brick Company, Inc.
Mason Contractor: NER Construction Management, Inc.

Post Road School
Location: White Plains, New York
Architect: KB&D Architects & Engineers, PC
Manufacturer: The Belden Brick Company
Mason Contractor: MPCC Corporation

School of Education
Location: Williamsburg, Virginia
Builder: Barton Marlow Company
Manufacturer: The Belden Brick Company
Distributor: Batchelder & Collins, Inc.
Mason Contractor: Coastal Masonry

University of Michigan Stadium Expansion and Renovation
Location: Ann Arbor, Michigan
Architect: HNTB
Builder: Barton Malow Company
Manufacturer: The Belden Brick Company
Distributor: Leidal and Hurth Mason Contractors,
Boatnerc Masonry, &
Baker Construction

Washington University Early Childhood Learning Center
Location: St. Louis, Missouri
Architect: Ross Barney Architects
Landscape Architect: Ground Associates
Builder: United Construction Enterprise Co.
Manufacturer: Asra Brick Company
Distributor: John J. Smith Masonry Company
Mason Contractor: U & I Supply Corporation

HEALTH CARE FACILITIES

The Wilmer Eye Institute - Johns Hopkins Hospital
Location: Baltimore, Maryland
Architect: Ayers Saint Gross
Landscape Architect: Davis Design Group
Associate Architect: Wilton Solz
Builder: Whiting Turner Contracting Company
Manufacturer: Glen-Gary Corporation
Distributor: L & L Supply Corporation
Mason Contractor: Manganaro

HOUSES OF WORSHIP

St. Patrick Catholic Church
Location: Iowa City, Iowa
Architect: Neumann Monson Architects
Landscape Architect: MMS Consultants
Associate Architect: SWA Architects
Builder: McCloskey Architecture
Mason Contractor: Yoder Masonry

MUNICIPAL/GOVERNMENT/CIVIC

Alta Mesa Pump Station
Location: Dallas, Texas
Architect: CarriagaCopeian Architects, LLP
Manufacturer: Acme Brick Company
Mason Contractor: Masonry and Stucco Services, Inc.

PAVING & LANDSCAPE ARCHITECTURE

Pack Square Park
Location: Asheville, North Carolina
Architect: LaQuatra Bond Associates
Associate Architect: Cole Jersten and Stone
Builder: ValleyCrest Landscape Development
Manufacturer: Pine Hall Brick Company, Inc.
Mason Contractor: ValleyCrest Landscape Development

RESIDENTIAL — MULTI-FAMILY

The Lyric at Carleton Place
Location: St. Paul, Minnesota
Architect: BKV Group
Builder: Jaeger Construction, LLC
Manufacturer: The Belden Brick Company
Mason Contractor: Hollenbeck & Nelson

RESIDENTIAL — SINGLE FAMILY

Lewishburg Residence
Location: Lewishburg, Pennsylvania
Architect: Archer & Buchanan Architecture, Ltd.
Landscape Architect: Landscapes Inc.
Builder: CWB Distinctive Homes, LLC
Manufacturer: Glen-Gary Corporation
Mason Contractor: Preston Boop

All credit information appears as it was provided in the entry by the architect or BIA member company.

A special thank you to this year's judges:

Eugenia Brieves – QPK Design
Bobby Eichholz – Rialto Studio, Inc.
Walter Jennings – Maurice Jennings Architect
Paul Matheny – Matheny Goldman Architects, AIA

Scan the code to see more pictures in the Brick Photo Gallery. To download a free mobile application, go to http://scan.mobi on your mobile device or text 'SCAN' to 72267.
Figure 1. Detailed photos of the project.

Figure 2. A close-up of the brickwork.

MANUFACTURING

The specifications for the brickwork were as follows:

1. Size: 2" x 4" x 8"
2. Color: Red
3. Material: Clay
4. Type: Handmade

The brickwork was manufactured by a local brickyard and delivered to the site in bulk.

INSTALLATION

The brickwork was installed using a traditional mortar mix.

1. The bricks were laid out in a grid pattern.
2. A layer of mortar was applied to the foundation.
3. The bricks were placed in the mortar, ensuring a tight fit.
4. A second layer of mortar was applied over the top.
5. The process was repeated until the desired height was reached.

QUALITY CONTROL

The brickwork was inspected by the project manager and approved for installation.

FINISHING TOUCHES

The final touches were added to the brickwork to ensure a professional finish.

1. The edges were smoothed with a trowel.
2. Any gaps were filled with additional mortar.
3. The brickwork was allowed to cure for at least 24 hours.
4. The final inspection was conducted to ensure satisfaction.

The completed brickwork added a unique touch to the project, enhancing the overall aesthetic.

SPECIFYING BRICK FOR DURABILITY AND BEAUTY

When choosing brick for your project, consider the following factors:

1. Durability: Select bricks that are known for their longevity and resistance to wear.
2. Aesthetics: Choose colors and textures that complement the overall design.
3. Cost: Compare prices and materials to ensure a balanced budget.
4. Local availability: Opt for bricks that are easily accessible and can be obtained on time.
Table 1. Bracing Details

<table>
<thead>
<tr>
<th>Number</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
</tr>
<tr>
<td>105</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
</tr>
<tr>
<td>200</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
<td>SW</td>
</tr>
</tbody>
</table>

Table 2. Material Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1800</td>
</tr>
<tr>
<td>Strength</td>
<td>MPa</td>
<td>250</td>
</tr>
<tr>
<td>Modulus</td>
<td>GPa</td>
<td>70</td>
</tr>
</tbody>
</table>

Diagram 1

[Diagram of a structural element or system, showing various components and their connections.]

Figure 1

[Image of a specific structural detail or component, labeled with dimensions or specifications.]
the formation of vertical cracks. The compressive strength is the peak load divided by the area over which the load is applied. Except for thin brick, all brick must meet a minimum compressive strength requirement. While compressive strength is a measure used in structural applications, it is used here to determine that a brick has met some minimum level of partial vitrification. This property is also used in combination with absorption and saturation coefficient to assess durability. Specifying a very high compressive strength for a brick does not guarantee that it is durable; a combination of requirements determines this. In fact, limiting brick to a compression strength that is higher than required by the ASTM standards for brick eliminates a lot of very durable brick from consideration.

Water absorption by brick is a natural phenomenon. Boiling water absorption and saturation coefficient both are related to absorption. The amount of water a brick absorbs is related to the quantity of pores and the conditions of saturation. Pores in brick can range in size from a few tenths of one micron to several hundred microns. One inch is equal to about 25,400 microns. The measure of the amount of saturation is simply the percentage of weight gain of a dry brick on immersion in water for a defined period. These periods for saturation have been standardized as 24 hours in room temperature or "cold" water (CWA) and five hours in boiling water (BWA). The 24-hour CWA test saturates most of the "small" pores in the brick while the five-hour boiling test brings the brick to near 100 percent saturation. Small pores in the micron size range are called capillaries and exert a force or suction on water. A brick with small capillary pores will absorb water and weep mortar more rapidly than a brick with larger pores. The ratio of cold to boiling water absorption (CWA:BWA) is referred to as the saturation coefficient. Since CWA represents absorption by "small" pores and BWA represents "total" absorption by both small and large pores, then the saturation coefficient is a number that reflects the fraction of small pores in the brick.

It is important to realize that the durability of some brick is established by means other than the absorption properties. Alternates and alternatives in ASTM standards qualify brick that are known to perform well in service. A brick qualifying for a designation by an alternate or alternative does not signify that it is of a lower quality. Saturation coefficient is not necessarily a good predictor of durability for brick with low absorption. Thus if such a brick meeting ASTM C216 has a CWA of no more than 8.0 percent, then it qualifies as a Grade SW brick. Likewise, if a brick qualifying for ASTM C216 can pass a 50-cycle freezing and thawing test, then it is designated as a Grade SW brick. In both cases, the brick also must meet the minimum compressive strength requirements established for Grade SW.

Appearance. Appearance attributes addressed in the standard include size variation, distortion (wrinkles of the exposed surface), out of square, chippage, and imperfections visible from a prescribed distance. Table 3 indicates the classification and nomenclature used in each standard. For the Type classification, the first two letters relate to the standard: FB for facing brick, HB for hollow brick, and TB for thin veneer brick. The letter suffices A, X, Z, and B indicate the following control of appearance features:
- S indicates brick for general use, the standard requirement for the industry. The S designation is the default when no Type is stipulated for the project.
- X indicates a tighter control of appearance-related attributes: more stringent dimensional tolerances, fewer chips, smaller cracks. This is often referred to as worst or severe requirements.

Table 2. Physical Properties of Brick Designations

<table>
<thead>
<tr>
<th>ASTM Standard</th>
<th>Durability Designation</th>
<th>Minimum Compressive Strength, Gross Area psi</th>
<th>Maximum Five-Hour Boiling Absorption, percent</th>
<th>Maximum Saturation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average of 5 brick</td>
<td>Individ.</td>
<td>Average of 5 brick</td>
</tr>
<tr>
<td>C62 Building Brick</td>
<td>Grade SW</td>
<td>3000</td>
<td>2500</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>Grade MW</td>
<td>2500</td>
<td>2200</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Grade HW</td>
<td>1500</td>
<td>1250</td>
<td>No Limit</td>
</tr>
<tr>
<td>C216 Facing Brick</td>
<td>Grade SW</td>
<td>3000</td>
<td>2500</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>Grade MW</td>
<td>2500</td>
<td>2200</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Grade HW</td>
<td>1500</td>
<td>1250</td>
<td>No Limit</td>
</tr>
<tr>
<td>C652 Hollow Brick</td>
<td>Grade SW</td>
<td>3000</td>
<td>2500</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>Grade MW</td>
<td>2500</td>
<td>2200</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Grade HW</td>
<td>1500</td>
<td>1250</td>
<td>No Limit</td>
</tr>
<tr>
<td>C1068 Thin Veneer Brick</td>
<td>Grade Ext.</td>
<td>--</td>
<td>--</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>Grade Int.</td>
<td>--</td>
<td>--</td>
<td>22.0</td>
</tr>
<tr>
<td>C1405 Glazed Brick, Single-fired</td>
<td>Class Ext.</td>
<td>6000</td>
<td>5600</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Class Int.</td>
<td>3000</td>
<td>2500</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 3. Brick Appearance Classifications

<table>
<thead>
<tr>
<th>ASTM Standard</th>
<th>Appearance Classification Name</th>
<th>More Stringent Requirements</th>
<th>Less Stringent Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>C62 Building Brick</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>C126 Glazed Brick</td>
<td>Grade</td>
<td>SS</td>
<td>S</td>
</tr>
<tr>
<td>C216 Facing Brick</td>
<td>Type</td>
<td>FBX</td>
<td>FBS</td>
</tr>
<tr>
<td>C652 Hollow Brick</td>
<td>Type</td>
<td>HEB</td>
<td>HBS</td>
</tr>
<tr>
<td>C1068 Thin Veneer Brick</td>
<td>Type</td>
<td>TBX</td>
<td>TBS</td>
</tr>
<tr>
<td>C1405 Glazed Brick, Single-fired</td>
<td>Class</td>
<td>SS</td>
<td>S</td>
</tr>
</tbody>
</table>

Examples of Brick and Appearance Designations. Type BS brick is used for general masonry construction. Most bond patterns and mortar joint treatments can be used. Figure 6 shows an extruded brick with a wide color range that meets Type FBS.

Type BX are used where the tighter dimensional tolerances are needed. This includes brickwork laid in stack bond, in soldier courses, or in intricate bond patterns, with raked joints and where sections of masonry have small dimensions. Figure 7 is an extruded brick, Type FBX, with a split laid with a raked joint.

Type BA brick exhibits a unique appearance. They are the most often used in residential construction, and are appropriate for commercial and institutional applications, especially when a colonial look is desired. Figure 8 shows a sand-struck, hand-molded Type FBA brick that is flashed.
Click Your Way to AIA/CES Credits Online

All of the AIA/CES credit programs offered through *Brick In Architecture* have moved online. To earn AIA/CES credit for *Specifying Brick for Durability and Beauty* and other topics, log on now to:

Earning your credits online is not only convenient, but it offers these benefits as well:
- Instant scoring
- On-demand printing of certificates
- Faster reporting of credits to AIA
- Access to previous technical discussions for additional credits

For questions, contact Megan Seid at [contact information]

Let the *Brick In Architecture* editors know about your firm's projects that reflect excellence in design using clay brick. Your project will be considered for publication in upcoming issues of *Brick In Architecture*.