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Modulus of elasticity (MOE) is one of the main factors that affect 
the deformation characteristics and serviceability of concrete in the 
hardened state. The use of recycled concrete aggregate (RCA) in 
concrete production can lead to a significant reduction in the MOE. 
An artificial neural network (ANN) was employed to quantify the 
effect of coarse RCA on the concrete’s MOE. A database summa-
rizing over 480 data series obtained from 52 technical publications 
was developed and analyzed using ANN. Concrete mixture propor-
tions and aggregate properties were considered input parameters. 
The rate of reduction in 28-day MOE was considered the output 
parameter. An additional data set of 43 concrete mixtures obtained 
from laboratory investigation of concrete with well-known prop-
erties was used to validate the established model. Several combi-
nations of input parameters and ANN architectures were consid-
ered in the analysis. Results indicated that the performance of the 
system was acceptable, with a coefficient of correlation ranging 
from 0.71 to 0.95 for the training, validation, and testing of the 
model with a mean square error limited to 0.008. The developed 
model was incorporated for a case study on a typical concrete used 
for rigid pavement construction. Contour graphs were developed 
to showcase the effect of up to 100% coarse RCA replacement 
on the variations in the MOE of concrete made with 0.40 water- 
cementitious materials ratio (w/cm) and 323 kg/m3 (545 lb/yd3) of 
a binary cement, designated for rigid pavement construction. The 
results indicated that depending on the RCA quality, a reduction of 
10 to 30% in the MOE of pavement concrete made with 50% RCA 
can be expected. However, the reduction in the MOE will be limited 
to 10% when RCA with water absorption limited to 2.5% and an 
oven-dry specific gravity of over 2500 kg/m3 (156 lb/ft3) is used.

Keywords: artificial intelligence; machine learning; modulus of elasticity; 
neural networks; recycled concrete aggregate; sustainable infrastructure.

INTRODUCTION
Construction and demolition (C&D) waste accounts for 

a considerable portion of solid wastes with an increasing 
rate of generation in the United States. The total amount of 
C&D waste was estimated to be over 325 million tons in the 
United States in 2003.1 More recent estimates by the Envi-
ronmental Protection Agency (EPA) indicate that over 530 
and 535 million tons of C&D waste was generated in the 
United States in 2013 and 2014, respectively, with concrete 
constituting about 70% of the C&D waste.2,3 Historically, 
concrete from C&D waste has mostly been dealt with through 
disposal in landfills. The environmental impacts, raising 
issues with the depletion of virgin aggregate, more restric-
tive landfill policies, and the potential savings in construc-
tion costs associated mainly with reduced hauling distances, 
support the idea of seeking alternative applications for C&D 
waste. One of the main ideas is to turn the waste concrete 

into an added value material—recycled concrete aggregate 
(RCA)—for use as a replacement of the virgin aggregate in 
concrete construction.4,5

The performance of concrete made with RCA can be 
impacted when using RCA materials of inferior quality 
compared to that of virgin aggregate. The MOE is one of 
the characteristics of concrete that can be highly sensitive 
to the incorporation and quality of RCA. The availability 
of residual mortar in RCA particles can reduce the overall 
stiffness and restraining capacity of the coarse-aggregate 
skeleton and increase the absolute volume of mortar in the 
hardened state. This reduces the rigidity of the concrete, 
resulting in a lower MOE compared to the corresponding 
mixtures prepared without any RCA. Moreover, the pres-
ence of microcracks in the residual mortar, old virgin aggre-
gate, and the old interfacial transition zone (ITZ) between 
these two phases (anticipated due to the crushing procedure) 
can affect the MOE significantly.6 Several sources in the 
technical literature indicate a significant reduction in MOE 
due to the RCA incorporation.5,7-9

Traditionally, the MOE of concrete is considered to 
depend on the compressive strength, unit weight, and type 
of aggregate in use. For example, the European standard10 
considers the MOE as a function of compressive strength, 
with estimated values for each strength category presented 
in tabular format. The Japanese standard11 uses a tabular 
format to estimate the MOE for two main concrete cate-
gories: 1) normal-aggregate concrete; and 2) lightweight- 
aggregate concrete. The American Concrete Institute 
(ACI)12 considers two equations for estimating the MOE as 
a function of compressive strength: 1) Eq. (1) for lightweight 
concrete with a unit weight of 1440 to 2560 kg/m3 (90 to 
160 lb/ft3); and 2) Eq. (2) for normalweight concrete. The 
equations are as follows

	 Ec = (0.043√fc′)(Wc)1.5	 (1)

	 Ec = 4700√fc′	 (2)

where Wc is the unit weight of the concrete, kg/m3; and fc′ is 
the compressive strength, MPa.
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Behnood et al.13 indicated that the abovementioned 
models cannot accurately predict the MOE of concrete made 
with RCA. Given the importance of the issue, considerable 
efforts have been devoted to quantifying the effect of RCA 
on MOE. Examples of such models are provided in Eq. (3) 
to (10), developed by Ravindrarajah and Tam,14 Dhir et al.,15 
Dillmann,16 Mellmann,17 Kakizaki et al.,18 Zilch and Roos,19 
Corinaldesi,20 and Xiao et al.,21 respectively

	 Ec = 4.63fcy
0.50	 (3)

	 Ec = 0.37fc + 13.1	 (4)

	 Ec = 0.63443fcu + 3.0576	 (5)

	 Ec = 0.378fc + 8.242	 (6)

	 E fc cu�190 2300 20001 5( ) ( ).�/ / 	 (7)

	 Ec = 9.1(fcu + 8)1/3 × (ρ/2400)2	 (8)

	 Ec = 18.8(0.83fcu/10)1/3	 (9)

	 Ec = 100/(2.8 + 40.1/fcu)	 (10)

where Ec is the MOE of concrete, GPa; fc is the compressive 
strength, MPa; and ρ is the unit weight of concrete, kg/m3.

However, considering the limitations associated with the 
experimental domain investigated in each case, and due to 
the variable nature of RCA materials, the available analytical 
models still need to be expanded. Examples of such models 
can be found in the literature where mechanical properties of 
concrete made with RCA were investigated using deep learning 
and soft computing.13,22,23 The research presented in this paper 
establishes a model to estimate the MOE of concrete made 
with coarse RCA that is based on the artificial neural network 
(ANN) method. A wide range of mixture design parameters, 
including the binder type and content, water content, virgin 
aggregate properties and content, and RCA characteristics 
and content are considered as input parameters. The extent 
of the variation in MOE due to RCA use was the output. A 
database was developed and analyzed to establish a prediction 
model. Given the wide range of investigated parameters, the 
model is intended to estimate the effect of RCA on the MOE 
of concrete designated for a variety of applications, including 
infrastructure construction.

RESEARCH SIGNIFICANCE
Given the variable nature of RCA materials, there exists 

the need to have predictive tools that enable reliable estima-
tions for properties of concrete made with RCA, including 
the MOE. Developing the model to estimate variations in 
the MOE of concrete involved three main phases. The first 
phase included the development and screening of a database 
of published literature on the MOE of concrete made with 
coarse RCA. The second phase was to generate laboratory 
data to validate the model. The third phase involved testing 
the model based on ANN.

EXPERIMENTAL PROGRAM
Development and analysis of database

The database that was established to correlate the MOE of 
concrete with the key parameters affecting it consisted of 484 
data series obtained from 52 published articles.4,7-9,20,24-70 The 
28-day compressive strength of the investigated concrete 
mixtures ranged from a minimum of 15 MPa to approxi-
mately 110 MPa (2175 to 15,950 psi). The minimum and 
the maximum MOE values were 11 and 55 GPa (1595 and 
8000 ksi), respectively. Each dataset included a summary of 
the concrete mixture design, virgin aggregate content and 
properties, and coarse RCA content and characteristics. The 
investigated input factors are elaborated as follows.

Binder: Binder content (kg/m3) and binder type, which was 
considered as a categorical factor of 1 or 2. An input value of 
1 was attributed to the concrete with plain portland cement 
(OPC), while binder type 2 was used for concrete mixtures 
with supplementary cementitious materials (SCMs).

Water: water-binder ratio (w/b), water-cement ratio (w/c), 
and water content (kg/m3).

Fine aggregate: Fine aggregate content (kg/m3).
Virgin coarse aggregate: Virgin coarse aggregate content 

(kg/m3), virgin coarse aggregate water absorption (%), virgin 
coarse aggregate oven-dry specific gravity, and virgin coarse 
aggregate Los Angeles (LA) abrasion value (%).

Coarse RCA: Coarse RCA (C-RCA) content (kg/m3), 
coarse RCA water absorption (%), coarse RCA oven-dry 
specific gravity, coarse RCA LA abrasion value (%), and 
coarse RCA replacement ratio (% mass).

Total coarse aggregate: Total coarse aggregate content 
(kg/m3), combined coarse aggregate water absorption (%), 
combined coarse aggregate oven-dry specific gravity, and 
combined coarse aggregate LA abrasion value (%). The 
combined coarse aggregate properties were calculated as a 
linear combination of the properties and relative mass of the 
blend constituents, as proposed by Omary et al.71 Equations 
(11), (12), and (13) were used to determine the oven-dry 
specific gravity, water absorption, and mass loss due to LA 
abrasion, respectively, of a given combination of coarse 
aggregate, respectively, as suggested by Omary et al.71

CoarseSG = [(MassRCA × RCASG) + (MassNC × NCSG)]/(MassRCA + MassNC)		
		  (11)

	CoarseAbs = [(MassRCA × RCAAbs) + (MassNC × NCAbs)]/(MassRCA + MassNC)		
		  (12)

CoarseLA = [(MassRCA × RCALA) + (MassNC × NCLA)]/(MassRCA + MassNC)		
		  (13)

where MassRCA is the RCA content (kg/m3); MassNC is 
the virgin coarse aggregate content (kg/m3); RCASG is the 
oven-dry specific gravity of RCA; NCSG is the oven-dry 
specific gravity of the virgin coarse aggregate; RCAAbs is the 
water absorption of the RCA (%); NCAbs is the virgin coarse 
aggregate absorption rate (%); RCALA is the mass loss due to 
LA abrasion of RCA (%); NCLA is the mass loss due to LA 
abrasion of the virgin coarse aggregate (%); and CoarseSG, 
CoarseAbs, and CoarseLA are the oven-dry specific gravity, 
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water absorption rate (%), and LA abrasion (%) of the coarse 
aggregate combination, respectively.

Table 1 offers a summary of the input features along with 
the corresponding minimum and maximum values. Four 
different scenarios of input factors were explored to ensure 
the most generalized and robust predictions with the lowest 
chance of overfitting the data. Development of a comprehen-
sive model requires employment of user-friendly, yet repre-
sentative, indexes to depict the RCA quality. One should note 
that the heterogeneous nature of RCA makes it impossible to 
define representative indexes at the microlevel. Therefore, 
the considered RCA properties included water absorption, 
specific gravity, and mass loss due to LA abrasion, which 
are also employed by the standards, recommendations, and 
guidelines to define RCA quality.72 The investigated input 
scenarios are elaborated in the following and summarized 
in Table 1.

Scenario I—The input factors included 13 independent 
properties summarizing the key mixture design details, 
virgin aggregate properties, and RCA characteristics. The 
aggregate-related properties included the aggregate content 
(kg/m3), oven-dry specific gravity, and water absorption (%) 

for both the virgin and RCA materials. The LA abrasion 
value was not included in the first scenario because not all 
the investigated sources from the literature reported these 
values for RCA.

Scenario II—A total number of 18 input factors were 
investigated for the second scenario. The input parameters 
included the 13 independent properties (elaborated on in 
Scenario I) and an additional set of five dependent param-
eters. The aggregate-related properties considered in the 
second scenario included the aggregate content (kg/m3), 
oven-dry specific gravity, and water absorption (%) for both 
the virgin and RCA materials. Again, the LA abrasion of the 
coarse virgin aggregate and RCA were not included in the 
analysis. The additional dependent variables were the total 
water content in the mixture, total coarse-aggregate content 
(kg/m3), RCA replacement ratio (% mass) of coarse aggre-
gate, combined coarse aggregate oven-dry specific gravity, 
and combined coarse aggregate water absorption (%); the 
last two values were calculated using Eq. (11) and (12), 
respectively.

Scenario III—A total number of 15 independent input 
parameters were considered for the third scenario. The 13 

Table 1—ANN model input and output parameters for database and laboratory mixtures

Parameter

Database Laboratory Scenario

Min. Max. Avg.
Std.
dev.* Min. Max. Avg.

Std. 
dev.* I II III IV

In
pu

t p
ar

am
et

er
s

1 Binder content, kg/m3 210 609 375.2 65.5 317 323 322 2 ● ● ● ●

2 Binder type 1: OPC 2: SCM — — 2 2 — — ● ● ● ●

3 Virgin coarse content, kg/m3 0 1950 558.0 444.0 0 1136 632 310 ● ● ● ●

4 Coarse RCA content, kg/m3 0 1800 501.9 435.0 0 964 410 260 ● ● ● ●

5 Water-binder ratio (w/b) 0.25 0.87 0.48 0.11 0.37 0.45 0.40 0.02 ● ● ● ●

6 Water-cement ratio (w/c) 0.29 1.22 0.52 0.14 0.53 0.80 0.63 0.11 ● ● ● ●

7 Fine aggregate content, kg/m3 465 1301 726 126 772 795 785 7 ● ● ● ●

8 Coarse aggregate absorption, % 0.20 6.10 1.26 0.80 0.50 0.98 0.80 0.10 ● ● ● ●

9 C-RCA absorption, % 1.93 18.91 5.39 2.41 4.20 7.58 5.40 1.17 ● ● ● ●

10 Coarse specific gravity, OD, kg/m3 2483 2880 2607 82 2640 2730 2719 23 ● ● ● ●

11 C-RCA specific gravity, OD, kg/m3 1800 2602 2313 125 2170 2380 2297 73 ● ● ● ●

12 Coarse aggregate NMAS, mm 8 32 20.1 4.0 19 19 19 0 ● ● ● ●

13 Coarse RCA NMAS, mm 8 32 19.0 4.9 13 19 18 2 ● ● ● ●

14 Coarse aggregate LA abrasion, % 14 43 20.8 6.0 24 43 29.3 5.1 ● ●

15 C-RCA LA abrasion, % 13.7 81.7 33.8 8.8 33 53 39.3 6.2 ● ●

16 Water content, kg/m3 108 234 175 30 120 143 128 7 ● ●

17 Total coarse aggregate content, kg/m3 640 1950 1060 143 907 1136 1042 53 ● ●

18 Coarse combination absorption, % 0 16 3.2 2.0 0.50 7.13 2.70 1.40 ● ●

19 Coarse combination specific gravity, 
OD 1800 2880 2467 144 2210 2730 2543 123 ● ●

20 Coarse combination LA abrasion, % 13.7 51.5 27 8 24 53 33.5 5.5 ●

21 Coarse RCA replacement ratio 0 1 0.5 0.4 0 1 0.4 0.3 ● ●

Output Relative MOE (RMOE) 0.44 1.37 0.89 0.12 0.67 1.05 0.89 0.09

*Standard deviation.

Note: 1 kg/m3 = 1.686 lb/yd3.
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factors elaborated on Scenario I were incorporated along 
with the LA abrasion values of the virgin coarse aggregate 
and the RCA materials. As stated earlier, not all the inves-
tigated references reported the LA values of the aggregate. 
Therefore, based on the data reported in the literature, in 
addition to a laboratory investigation that was undertaken 
herein, correlations were established between the LA abra-
sion and the water absorption and specific gravity of the 
RCA as suggested by González-Taboada et al.73 Figure 1 
presents the correlations between the LA abrasion and the 
water absorption developed by González-Taboada et al.73 
and further updated by the authors obtained from over 
100 different RCA types. A strong linear correlation was 
observed, with a R2 value of 0.75 for the relationship between 
the LA abrasion and the water absorption. The correlation 
established in Fig. 1 was employed to estimate the LA abra-
sion for concrete mixtures where actual values were missing 
data points of the database.

Scenario IV—A total number of 21 input parameters were 
included in this scenario. The aggregate-related properties 
considered in this scenario included the aggregate content 
(kg/m3), oven-dry specific gravity, water absorption (%), 
and LA abrasion (%) for both the virgin and RCA materials. 
The additional dependent variables were the water content 
in the mixture, total coarse aggregate content (kg/m3), RCA 
replacement ratio (% mass), combined coarse aggregate 
water absorption (%), combined coarse aggregate oven-dry 
specific gravity, and combined coarse aggregate LA abrasion 
(%) calculated using Eq. (11), (12), and (13), respectively.

Output—The output of the study was the relative variation 
in MOE, defined in Eq. (14)

	
RMOE =

MOE of concrete made with RCA

MOE of corresponding refeerence concrete made without RCA 	
		  (14)

A relative performance value of 1.0 was considered for 
the control mixture (proportioned without any RCA) of 
each study reported in the database. Considering the relative 
MOE (RMOE) as the means of comparison reduces the uncer-
tainties related to non-uniform experimental conditions—for 

example, air content in the hardened state, specimen size, 
test device, loading rate, and test protocol—typical of data-
base analysis. This way, one can assume that there are no 
significant correlations between the aforementioned factors 
and the relative performance of the mixtures.

Laboratory investigation
Material properties—In total, 43 different concrete 

mixtures were produced in the laboratory. Type I/II portland 
cement, Class C fly ash (FA-C), and ground-granulated blast 
furnace slag (GGBS) were used as binder materials. The 
mixtures were proportioned with either binary or ternary 
cement. The binary cement was composed of 75% (by mass) 
OPC and 25% FA-C. The ternary system incorporated 35% 
FA-C and 15% GGBS. The binary cement was adopted 
from the concrete mixture design employed by the Missouri 
Department of Transportation (MoDOT) for rigid pavement 
construction.72 The ternary system was optimized based on 
the mechanical properties and shrinkage of concrete equiv-
alent mortar prepared with a water-cementitious materials 
ratio (w/cm) of 0.40, developed by Khayat and Sadati.72 
Three different w/cm of 0.37, 0.40, and 0.45 were consid-
ered during the design of the concrete mixtures. Coarse 
RCA procured from six different sources, including five 
recycling centers and one laboratory produced RCA, were 
considered. A siliceous river sand was incorporated as fine 
aggregate. Table 2 summarizes the aggregate properties. An 
air-entraining agent was used to secure 6% ± 1% air in fresh 
concrete. A water-reducing admixture was incorporated to 
adjust the initial slump values. Table 1 details the properties 
of the mixture investigated in laboratory.

Concrete preparation and testing—A drum mixer with 
110 L capacity was used for concrete mixing. Slump and 
air content in the fresh state were determined according 
to ASTM C14374 and ASTM C231,75 respectively. Cylin-
drical specimens measuring 100 x 200 mm (4 x 8 in.) were 
employed to determine the compressive strength76 and 
MOE.77 A vibrating table was employed to secure proper 
consolidation of the concrete. Extracted samples were then 
covered with wet burlap and plastic sheets up to 24 hours 
after casting. The specimens were cured in lime-saturated 
water at 21 ± 2°C (70 ± 3.6°F) up to the testing time at 
28 days. Table 1 summarizes the properties of the investi-
gated mixtures.

Model development
Being inspired by biological nervous system, the ANNs 

are information analysis paradigms that are widely used 
as computational tools. Concretely, an ANN is a universal 
function approximator that builds the mapping between an 
input and an output space. Modeling using ANN involves 
five main steps: 1) representing the problem and acquiring 
the data; 2) defining the architecture; 3) determining the 
learning process; 4) training the network; and 5) testing the 
developed network to ensure robustness and generaliza-
tion.78 Neural networks are composed of a large number of 
interconnected artificial processing units, known as neurons. 
Usually, these neurons are arranged in layers (input, hidden, 
and output), which in turn are fully connected; the number of 

Fig. 1—Correlation between LA abrasion and water 
absorption.



55ACI Materials Journal/January 2019

neurons per layer defines the ANN architecture. Each neuron 
typically consists of five different parts: inputs, weights, 
transfer function, activation function, and output, as illus-
trated in Fig. 2. The transfer function used in this study is the 
weighted sum presented in Eq. (15)

	
net w xj

T

i

n

ij i� � �
�

w x
0

	 (15)

where x represents the input vector applied to a given neuron 
associated with weight vector w; thus, netj is the weighted 
sum of the j-th neuron based on its weights and input values 
from n neurons of the preceding layer; wij is the weight factor 
between the j-th neuron and the i-th neuron of the preceding 
layer, whose output is xi, and b = w0jx0 is the bias (x0 = 1).

The activation function φ(·) translates the net value to 
the neuron output. A variety of activation functions were 
presented in the literature, such as linear, sigmoid, and 
hyperbolic tangent sigmoid. In this study, the activation 
functions of the output and hidden neurons were set as linear 
and hyperbolic tangent sigmoid, respectively

	 φ(netj) = netj	 (16)

	
�( )net

ej net j
�

�
��

2

1
1

2 	 (17)

The first is the identity function, and the latter takes the net 
values in the range (–∞, ∞) and converts it into an output in 
the interval (–1, 1).

The neural network toolbox provided by MATLAB-2016a 
was used to develop the model. A multilayer perceptron 
(MLP) network with one hidden layer was used to form the 
ANN architecture. Adjusting the weight to ensure the desired 
output, based on experimental data, is defined as the training 
process. Given the acceptable performance in solving prob-
lems related to concrete materials78,79 the back-propagation 
learning algorithm80 was employed to train the system. This 
learning process consists of two main steps:

1. A forward flow of the input signal from the input layer 
toward the output layer and a calculation of error based on 
the comparison between the network’s output and the target 
value—that is, experimental data. The cost function (error) 
to be minimized (with respect to the ANN weights w) is 
given by

	
J

N i

N

i i( )w y y� � ��
�

�
��

1

2 1

2
 	 (18)

where ŷi = f(xi, w) is the output of the neural network when 
using a training set composed of N samples of {input, 
output} pairs:  � � � �

x yi i i

N
,

1
.

2. Backward propagation of the error signal and an adjust-
ment of all the neurons’ weights to minimize the error 
according to the generalized delta rule

	 wnew = wold + ∆wold	 (19)

In this work, the optimization method of Levenberg- 
Marquardt backpropagation (LMBP) was used to train the 
MLP81,82 because it is well-known to be effective83-85

	 ∆w = [H + μI]–1g	 (20)

	
g w w

w
� � �

�
�wJ
J

( )
( ) 	 (21)

Table 2—Properties of aggregate used in laboratory investigation

Aggregate Source Specific gravity, kg/m3 Absorption, % Los Angeles abrasion loss, % NMAS, mm

Virgin coarse 1 Crushed dolomite 2730 0.80 28 19

Virgin coarse 2 Crushed dolomite 2720 0.98 43 19

Virgin coarse 2 Crushed limestone 2640 0.50 24 19

Virgin fine Riverbed sand 2630 0.40 — 4

RCA 1 Laboratory-produced RCA 2350 4.56 41 19

RCA 2 Waste airfield concrete, Missouri 2350 4.46 33 19

RCA 3 Waste airfield concrete, Missouri 2380 4.20 33 19

RCA 4 Unknown concrete waste, Missouri 2250 5.75 39 19

RCA 5 Unknown concrete waste, Kansas 2240 6.05 38 19

RCA 6 Unknown concrete waste, Missouri 2170 7.58 44 19

RCA 7 Unknown concrete waste, Missouri 2210 7.13 53 12.5

Notes: 1 mm = 0.0394 in.; 1 kg/m3 = 1.686 lb/yd3.

Fig. 2—Schematic structure of simple neuron model.
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H w w

w
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�
�

2
2

2wJ
J

( )
( ) 	 (22)

where μ is a regularizing parameter; g and H are the gradient 
and Hessian of the cost function J(w); and I is the identity 
matrix. If the cost function increases, the regularizing param-
eter is increased by a factor of μ+; otherwise, it is decreased 
by μ– and the generalized delta rule is applied to update the 
weights.

Early stopping criterion based on consecutive validation 
set error checks was used to avoid overfitting the training 
data and to allow a better generalization performance of the 
MLP for previously unseen data. Additionally, each input 
parameter was scaled to the range (–1, 1).

In this study, a genetic algorithm (GA)86 with integer 
representation was used to tune the internal parameters of 
the MLP, specifically, the number of hidden neurons, the 
maximum number of validation checks, the initial regular-
izing parameter value, and its increase and decrease ratios.

A total of 436 data samples, corresponding to 90% of the 
data available in the developed database, were randomly 
selected for training the neural network. The 43 data series 
obtained from laboratory investigations (discussed in the 
aforementioned “Laboratory investigation” section) were 
used for model validation. The remaining 10% of the data 
from the database were used for testing the selected model.

The GA optimization was carried out using a popula-
tion of 100 individuals for 100 generations. To measure 
the performance consistency of a given ANN parameter 
configuration, the fitness function of the GA was defined 
as the median of the validation mean square error (MSE) 
of a given parameter configuration after the realization of 
30 trials, each of which with random weight initialization 
(to address the local optima issues common to these types 
of neural networks). The ANN parameters optimized using 
GA included the number of hidden neurons (N) within the 
range of [1, 30] and 30 grid points, the maximum number of 
validation checks (V) within the range of [3, 10] and eight 
grid points, the initial regularizing parameter (μ) within the 
range of [0.001, 1] and 1000 grid points, the regularizing 
parameter decrease ratio (μ–) within the range of [0.1, 0.8] 
and 100 grid points, and the regularizing parameter increase 

ratio (μ+) within the range of [1.5, 10] and 100 grid points. 
These parameters were discretized using a grid of linearly 
and equally spaced points within their respective ranges 
from which the GA was used to evolve the best combination. 
The optimization toolbox provided by MATLAB-2016a 
was used to perform this parameter tuning. The following 
fixed parameters were considered during the GA optimiza-
tion: LMBP training method and MSE cost function were 
used, respectively. The maximum training time was fixed at 
1  second while the maximum number of epochs was 102. 
The performance goal was 0, with a minimum gradient of 
10–7 and the maximum regularizing parameter (μmax) of 103.

The GA was run 10 times and the solutions obtained 
were used in the next step of the model development, 
which consisted of running 1000 trials for each of the ANN 
parameter configurations and selecting the one with the best 
performance in terms of the validation set error. In case of a 
tie, the architecture with the best training error was selected. 
For fine-tuning purposes, an additional parameter sweep 
analysis of the number of hidden neurons was carried out 
by fixing the other parameters around values close to the 
solutions obtained by the GA. This setting of the number of 
neurons in the MLP’s hidden layer is related to the approach 
discussed in Reference 79, in which the number of neurons 
is varied and the best architecture is selected. Finally, the 
same procedure was performed with an equal set of default 
parameters for all scenarios. The selected parameters are 
listed in Table 3.

The performance metrics—that is, regression results and 
MSE summarizing the correlations between the estimated 
values (neural network’s output) and the experimental data 
(target values)—of all the ANNs after the parameter tuning 
process are listed in Table 4. For each case, the optimal ANN 
parameter configuration for the training, validation, and test 
subsets were incorporated as defined earlier to investigate 
the different subsets of features including 13, 15, 18, or 21 
input parameters. Strong correlations were observed for the 
investigated models. The obtained correlation (R) values 
ranged from 0.71 to 0.95 for the training phase, 0.86 to 0.92 
for the validation phase, and 0.74 to 0.89 for the testing 
phase. The MSE values ranged from 0.00140 to 0.00690 
for the training, 0.00128 to 0.00218 for the validation, and 
0.00359 to 0.00848 for the testing phases. The bolded values 

Table 3—ANN parameters when performing hidden layer parameter sweep analysis

Parameter description

Parameter value per scenario (GA)

Default parameters

Number of parameters

13 18 15 21

Training method LMBP LMBP LM P LMBP LMBP

Cost function MSE MSE MSE MSE MSE

Number of hidden neurons (N) 7 7 28 16 (11, 8, 10, 8)

Maximum number of validation checks (V) 9 9 7 6 10

Initial regularizing parameter (μ) 0.7 0.14 0.03 0.03 0.001

Regularizing parameter decrease ratio (μ–) 0.2 0.26 0.50 0.14 0.1

Regularizing param. increase ratio (μ+) 2.4 2.8 2.70 5.10 10

Maximum regularizing parameter (μmax) 1010 1010 1010 1010 1010
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indicate best performance across train, validation, and test 
sets in Table 4.

RESULTS AND DISCUSSION
Model selection

The results presented in Table 4 suggest that the MLP is 
robust with respect to the parameter selection for this specific 
function approximation problem. Additionally, in terms 
of minimum MSE and the correlation coefficient (R), the 
prediction performances of the four models regarding their 
respective scenarios seem comparable. Therefore, based on 
Occam’s razor87—that is, the principle of parsimony—the 
simplest model was selected: Scenario I with default param-
eters due to the smaller validation error. In other words, given 
the requirements for proper prediction are met, it is gener-
ally recommended to select regression models with a lower 
number of input parameters. It is also recommended to avoid 
dependent variables as input parameters to avoid multi-col-
linearity, unless it is proven that the incorporation of such 
features can enhance the model performance. Figure 3 pres-
ents the correlations between the neural network’s predic-
tions about the selected model and the experimental values 
obtained during training, validation, and testing along with 
their respective MSEs. Figure 4 depicts the MLP prediction 
and the experimental value of the RMOE side by side for each 
sample. A reasonable match was obtained between the model 
predictions and the experimental values of RMOE, especially 
considering that the training data consisted of a collection of 
samples from technical publications (with case-by-case vari-
ations in experimental procedures, instruments, and condi-
tions) with missing values that still needed to be estimated; 
nevertheless, the ANN performs reasonably well in the vali-
dation (population of laboratory experiments) and in the test 
set. This fact indicates that the MLP is an adequate modeling 
tool for this estimation problem.

Case study
The model will be applicable for a wide range of appli-

cations as long as the input parameters are within the range 
of the database used for model development. Given the fact 

that transportation infrastructure is one of the main poten-
tial markets for RCA consumption, the selected model was 
employed to quantify the effect of RCA on MOE of concrete 
for rigid pavement construction. The test scenario involved 
investigating the rate of variation in the MOE of concrete 
prepared with 323 kg/m3 (545 lb/yd3) of cementitious 
materials and 0.40 w/cm. The simulated mixture was made 
with virgin coarse aggregate with 0.8% water absorption, 
2730 kg/m3 (170 lb/ft3) specific gravity, and 28% LA abra-
sion mass loss. The range of the investigated RCA properties 
were water absorption of 1.8% to 8.5%, oven-dry specific 
gravity of 2100 to 2500 kg/m3 (131 to 156 lb/ft3) and a 
replacement rate of 0 to 100% (by mass) for the simulation 
according to Scenario I. It should be noted that the mixture 
design and material properties used for case study are well 
within the typical criteria for rigid pavement construction 
used by state departments of transportations.88

Figure 5 presents the effect of RCA water absorption and 
the replacement rate (% mass) on the extent of variation in 
the MOE based on the model investigated in Scenario I. In 
general, the results indicate a reduction in the MOE due to 
the use of RCA with higher water absorption. The rate of 
reduction in the MOE was limited to 10% when RCA with 
water absorption limited to 2.5% was used (even up to 100% 
replacement). The rate of reduction in the MOE was 10%, 
15%, and 20% when 30%, 50%, and 100% RCA with water 
absorption of 4% was used in pavement concrete. The reduc-
tion rate was 15%, 20%, and 40% when 30%, 50%, and 
100% RCA with water absorption of 6% was used.

Figure 6 presents the effect of RCA oven dry specific 
gravity on the rate of variation in the MOE at different 
replacement ratios (% mass). In general, a reduction in MOE 
was observed as a result of using RCA with a lower oven-dry 
specific gravity. However, the reduction in the MOE was 
limited to 10% when RCA with an oven-dry specific gravity 
higher than 2500 kg/m3 (156 lb/ft3) was used. The results 
presented in Fig. 6 indicate a respective 15%, 25%, and 45% 
reduction in the MOE when 30%, 50%, and 100% RCA with 
an oven-dry specific gravity of 2200 kg/m3 (137 lb/ft3) was 
used in pavement concrete. The rate of reduction in the MOE 

Table 4—Summary of performance of various models

Scenario

R MSE

Train. Valid. Test Train. Valid. Test

After hidden layer parameter sweep analysis and using remaining parameter values close to GA solutions

(I) 13 features 0.9287* 0.8634 0.8906 0.00187 0.00218 0.00359

(II) 18 features 0.9389 0.9193 0.8332 0.00161 0.00196 0.00571

(III) 15 features 0.7098 0.9123 0.8092 0.00690 0.00155 0.00620

(IV) 21 features 0.9396 0.9086 0.8460 0.00160 0.00142 0.00511

After hidden neurons parameter sweep analysis using default parameters

(I) 13 features† 0.9259 0.8750 0.8861 0.00194 0.00193 0.00382

(II) 18 features 0.9472 0.8959 0.7410 0.00140 0.00159 0.00848

(III) 15 features 0.9298 0.8794 0.8846 0.00184 0.00180 0.00382

(IV) 21 features 0.9138 0.9175 0.8677 0.00225 0.00128 0.00424

*Bold values indicate best performance across train, validation, and test sets.
†Selected model.
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was respectively 15%, 20%, and 30% when 30%, 50%, and 
100% RCA with an oven-dry specific gravity of 2300 kg/m3 
(143.6 lb/ft3) was used. The results presented in Fig. 5 and 6 
also revealed that the use of 30% and 50% RCA can lead to 
a respective reduction of up to 20% and 30% in the MOE of 
pavement concrete when low-quality RCA with an oven-dry 
specific gravity of 2100 kg/m3 (131 lb/ft3) and water absorp-
tion as high as 8.5% is used.

SUMMARY AND CONCLUSIONS
A database was developed to investigate the effect of 

coarse RCA on the MOE of concrete. Over 480 data series 
were extracted from 52 technical papers to form the data-
base. The database includes key physical properties of the 
coarse RCA and mixture proportioning of the concrete. 
ANN was employed for the analysis of the database. Four 
different input scenarios were considered to investigate 
different combinations of the input parameters. The scenarios 
included concrete mixture design parameters and key prop-
erties of the virgin and recycled aggregate. Data obtained 
from testing 43 concrete mixtures were incorporated to vali-

date the developed models. Based on the results presented 
herein, the following conclusions can be drawn:
•	 A multilayer perceptron network and Levenberg- 

Marquardt backward propagation learning algorithm 
were successfully used to develop and optimize the 
ANN architecture with one hidden layer for estimating 
the variations in the MOE of concrete made with RCA.

•	 The validation results indicated that there is a strong 
correlation between the experimental target values and 
the data obtained through the simulation, with a coef-
ficient of correlation ranging from 0.86 to 0.92 and 
a mean square error limited to 0.002 for the selected 
model. The results obtained from testing the model with 
independent data from the database indicated acceptable 
performance, with a coefficient of correlation ranging 
from 0.74 to 0.89 for the investigated models.

•	 The data obtained from the analysis indicated that, in 
addition to the mixture design parameters and the RCA 
replacement rate, the oven-dry specific gravity and/or 
water absorption of RCA can be used for quantifying 
the effect of coarse RCA on concrete MOE.

Fig. 3—ANN model performance with 13 input parameters (Scenario I). Correlation coefficient between experimental values 
and ANN predictions for: (a) training; (b) validation; and (c) testing is shown. MSE during training, validation, and testing 
is depicted in: (d) as function of training epochs (one epoch corresponds to an entire pass through the training data samples).
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•	 The results obtained through the case study indicate that 
the reduction in the MOE of pavement concrete can be 
limited to 10% when coarse RCA with water absorption 
lower than 2.5% or an oven-dry specific gravity higher 
than 2500 kg/m3 (156 lb/ft3) is used, even at the full 
replacement rate.

•	 The use of 30% and 50% RCA can lead to a respective 
reduction of up to 20% and 30% in the MOE of pave-
ment concrete when low-quality RCA with an oven dry 
specific gravity of 2100 kg/m3 (131 lb/ft3) and water 
absorption as high as 8.5% is used.

Fig. 4—ANN model prediction (Scenario I with default parameters) and experimental data for: (a) training; (b) validation; and 
(c) testing versus their respective input indexes (Sample ID).

Fig. 5—Effect of RCA water absorption on MOE of concrete 
designated for rigid pavement construction, Scenario I.

Fig. 6—Effect of RCA oven-dry specific gravity on MOE 
of concrete designated for rigid pavement construction, 
Scenario I.
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