

Presentation of Sherbrooke student chapter

By: ESSELAMI Redha, Ph.D. Candidate, President of Sherbrooke student chapter

For its activities, the ACI Sherbrooke student chapter is supported by:

aci 2016 Excellent University

aci 2017

aci 2015 Excellent University

ACI Student Forum, ACI Fall Convention, October 14-18, 2018, Las Vegas

Introduction

ACI Sherbrooke is a student chapter of the American Concrete Institute (ACI) at the University of Sherbrooke.

Objectives of the Student chapter

- 1. To encourage exchanges between students and professionals
- 2. To participate in promoting the Université de Sherbrooke
- 3. To promote the visibility of the research in the field of concrete structures and cementitious materials

Introduction

Industrial and academic Sponsors

For its activities, the ACI Sherbrooke student chapter is supported

ACI Sherbrooke is a student chapter of the American Concrete Institute (ACI) at the University of Sherbrooke.

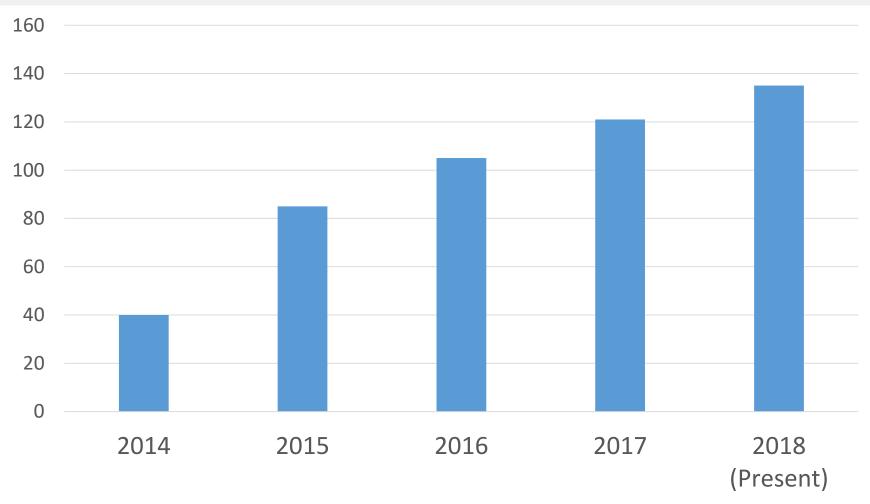
Objectives of the Student chapter

- I. To participate in various student competitions organized by the ACI in North America
- II. Promoting ACI Sherbrooke student chapter activities

Introduction

Academic Sponsors

LIA-ecomat


ACI Sherbrooke is a student chapter of the American Concrete Institute (ACI) at the University of Sherbrooke.

Objectives of the Student chapter

- I. To participate in various student competitions organized by the ACI in North America
- II. Promoting ACI Sherbrooke student chapter activities

Membership

This non-profit student section has 135 graduate and undergraduate members.

In full growth

43% Bachelor students 21% M.Sc. Students 25% Ph.D. Students 11% others

Executive members

The executive board is composed of:

- President,
- Treasurer,
- Secretary,
- Communication VP,
- Competitions VP,
- Undergrad activities VP,
- Representative of research group.

Activities

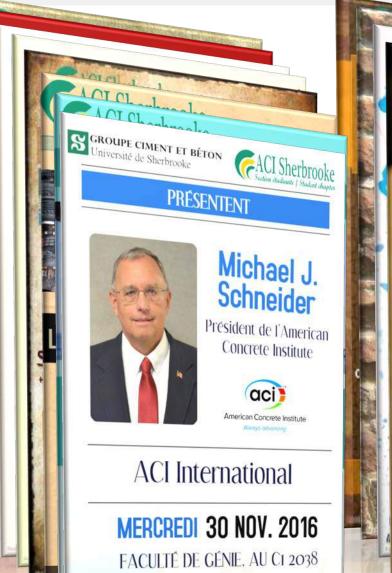
Technical and educational presentations

Invited speakers from different communities: Other universities, industry, consultants, designing.

Technical visits

Construction sites, industrial concrete projects, and cement and concrete plants.

Competitions


Student competitions for graduate and undergrad students such as: Eco concrete, quad chart, and photography.

ACI Conventions

Organizing trips for students to participate in ACI competitions and talk about their research projects

Lectures and networking events

Since 2014, the ACI Sherbrooke student chapter has offered to its members:

- 33 presentations
- 10 technical visits
- 5 ACI conventions
 - Washington, F2014
 - Philadelphia, F2016
 - Detroit, W2017
 - Anaheim, F2017
 - Las Vegas, F2018

Local Pervious concrete competition

Preparing students the for international competition by enhancing their knowledge about the most important elements of the competition.

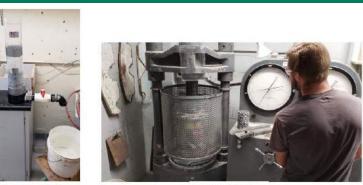


Figure 6 : Permeability tes

Figure 7 : Splitting test

The competition winners were announced during the wine and cheese conference.

EcoConcrete Student Competition (1st ed. at Anaheim 2017)

Developed by Sherbrooke Student chapter

A two-year project and collaboration of 19 students

<u>Outline</u>

- To promote the idea of environmental performance in concrete mix design as an important aspect of sustainability.
- To develop an innovative concrete mixture, with the lowest environmental impacts while maintaining maximum mechanical and durability performance.
- To seek out and use local sources of concrete materials (SCMs, ASCMs, recycled aggregates, etc.)

ACI Sherbrooke Section étudiante / Student chapter

EcoConcrete Student Competition (1st ed. at Anaheim 2017)

Potential

Lastest version:

EcoConcrete Student Competition

Summary

Developped by ACI Sherbrooke Student Chapter

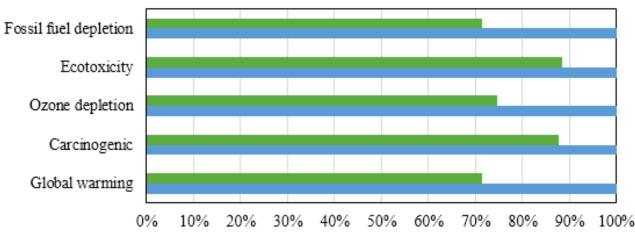

Table 1 : Base- and Alternative-Case Scenarios charcateristics						
		Base-Case	Alternative-			
Mix characteristics	Unit	Scenario	Case Scenario	Note		
Density	kg/m³	2470	2470			
Total binder content (b kg/m³	400	400	$b_{BCS} = b_{ACS}$		
Water-to-binder ratio	(w/b)	0.43	0.43	$w/b_{BCS} = w/b_{ACS} = 0.43$		
Cement substitution ra	at %	0%	40%	Maximum 40%		

Table 2 : Details of the potential environmental impact scores and variation

CalculationTools 2.01

 To promote the idea of environmental performance in concrete mix design as an important aspect of sustainability.

Figure 1: Your improvements in a glance

Alternative-Case Scenario Base-Case Scenario

				I Otentian				
		Base-Case	Alternative-	environmental	Table 3 : Sensivity a	analysis and est	imation of your fir	al score
Impacts categories	Units	Scenario	Case Scenario	impact reduction	Performances	Units	Weigthing	Results
Global warming	kg CO _{2 eq}	366.973	262.496	28.5%	Written report	%	0.25	100.0%
Carcinogenic	CTUh	5.18E-06	4.55E-06	12.2%	Poster presentation	%	0.20	80.0%
	kg CFC-11				•			*
Ozone depletion	eq	1.55E-05	1.16E-05	25.4%	Compressive strength	MPa	0.10	50.0
Ecotoxicity	CTUe	596.460	528.068	11.5%	Electrical resistivity	kΩ*cm	0.20	254.0
Fossil fuel depletion	MJ	142.815	102.095	28.5%	Environmental impact reduction	%	0.25	21.2%

ACI Conventions

ANAHEIM A2017

ANAHEIM Autumn 2017

- ACI Sherbrooke student chapter delegation consisted of 06 students.
- 05 students participated in eco-concrete competition.
- 01 student presented his research studies.

MIXTURE FORMULATION

Base-Case Scenario

Type 1 GU Portland Cement:	400	kg/m ³
Sand (natural):	740	kg/m ³
5-10 mm Aggregate:	1010	kg/m ³
Water:	172	kg/m ³

E/C = 0.43

new WHERDS Dry Trimmini Lastices, OC Canale

Alternative-Case S	cenario	
Type 1 GU Portland Cement:	240	kg/m ³
Coal fly ash:	120	kg/m ³
Metakaolin:	8	kg/m ³
Glass powder:	32	kg/m ³
Sand (natural):	740	kg/m ³
5-10 mm Aggregate:	1010	kg/m ³
Water:	172	kg/m ³
Sika viscocrete 2110:	0.8	kg/m ³
Sika De-Air:	0.8	kg/m ³
E/C = 0.43		

NPUTS FOR THE LIFE CYCLE ASSESMENT

GLASSPOWDER PRODUCTION ENERGY (PER KG)

Process	Quantity of energy	Unit
leating: naturel gas high ressure (CA-QC)	8,11E-06	m ³
rinding: electricity, nedium voltage (CA-QC)	0,068	kWh
ficronization: electricity, nedium voltage (CA-QC)	0,2262	kWh

ADMIXTURES

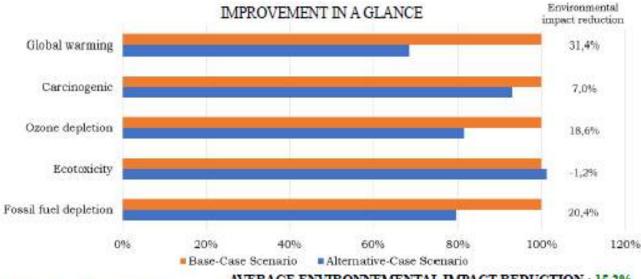
A lot of studies show that the environmental impacts of the admixtures are really low. Since they are used in really small proportions in the concrete mixtures, it's beneficial to use them because of all the benefits they can bring on the aspects of durability and mechanical performances.

MECHANICAL AND PHYSICAL PROPERTIES

Properties	Value	Age
Compressive strength	38.6 MPa	21 days
Estimated electric resistivity	26.2 kQ.cm	21 days

Material	Road	Rail	Waterway	Manufacturing location
Cement	155	0	0	Lafarge St-Constant, QC Canada
Sand	8,7	0	0	Beton Provincial Sherbrooke, QC Canada
Gravel	8,7	0	0	Beton Provincial Sherbrooke, QC Canada
Glass powder	222	0	0	VERROX (by Tricentris) Lachute, QC Canada
Fly ash	155	0	0	Lafarge St-Constant, QC Canada
Metakaolin	155	0	570	BASF Canada Mississauga, ON Canada

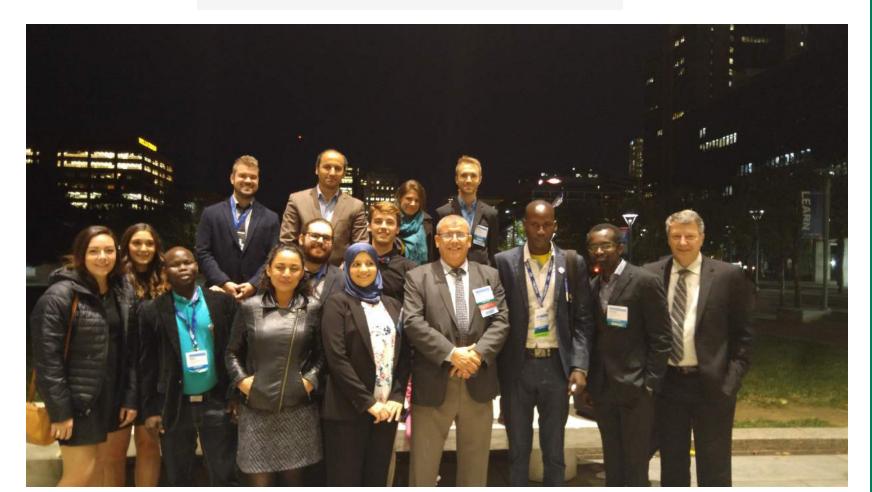
TRANSDORTATION (VM)


Base-Case Scenario environmental impact

Product	Global warming kg CO ₂ eq	Carcino- genic CTUh	Ozone Depletion Kg CFC-11.eq	Ecotoxicity CTEh	Fossil fuel depletion MJ
Type 1 (GU)	98,3%	85,4%	93,9%	82,4%	93,8%
Portland cement	371,572	4,55E-06	1,70E-05	566,52	156,875
0-5 mm sand	0,3%	0,6%	1,5%	1,4%	1,4%
	1,114	3,28E-08	2,70E-07	9,724	2,414
5-10 mm	1,4%	13,6%	4,8%	11,8%	4,7%
aggregate	5,177	7,25E-07	8,64E-07	80,84	7,921
Tap water	0,0%	0,4%	0,0%	4,5%	0,0%
	0,029	2,32E-08	3,51E-09	30,788	0,028
Total	377,892	5,33E-06	1,81E-05	687,872	167,238

As shown in the two figure above, some of the alternative materials have negative impact on the environment compared to the portland cement. However, those materials provide to the concrete a greater compressive strength and a better durability. Therefore, in combination with other materials which have less impact on environment, it is possible to design a concrete that is less damageable to the environment, that has an increased compressive strength and that is more durable.

AVERAGE ENVIRONNEMENTAL IMPACT REDUCTION : 15.2%



Always advancing

ACI Conventions

PHILADELPHIA A2016

Philadelphia Autumn 2016

- ACI Sherbrooke student chapter delegation consisted of 13 students.
- 6 students presented their research studies (5 oral and 1 poster).

Denver Automne 2015

Denver Automne 2015

Eight undergraduate students and ACI Sherbrooke members competed in the student competition;

Pervious concrete cylinder competition

The delegation finished 13th out of a total of 49 participating teams.

Student competitions

Philadelphia Automne 2016

For undergraduate students who competed in the student competition;

Mortar workability

The delegation finished 10th out of a total of 48 participating teams.

Student competitions

Kansas City Winter 2015 and Detroit Winter 2017

At the ACI convention undergraduate students and members of Sherbrooke chapter participated in the student competition,

FRP Composite Competition

One of the teams from the Université de Sherbrooke delegation finished 6th out of a total of 11 teams.

Photo Contest, First Version

TopromotecivilengineeringworkinconcreteandstimulatethecreativityofstudentsattheUniversitydeSherbrooke.

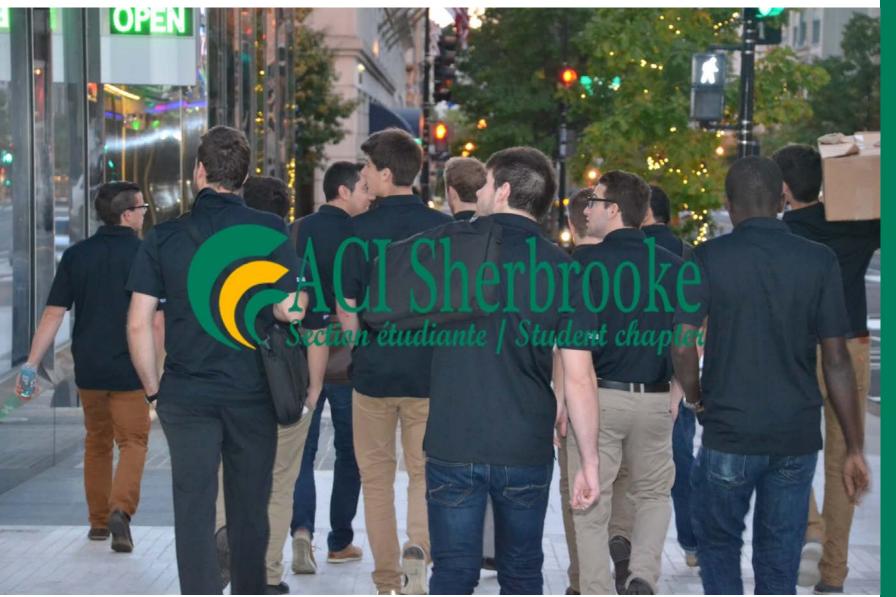
Categories:

Architectural Concrete

Concrete Deterioration

Concrete in laboratory

Glass concrete Plates!



ENSEMBLE Avec près du 106 trages offerte annuellement. BIP est un partenaie int gennaité pour le développement du célulations et toutier du l'universe de Distributions charge des d'autobilités de constraisance de Distributions charge et leurs aqués soutienniques de constraintes carge dementaires a leurs aqués soutienniques.

SHERBROOKE

In the aim to thank the companies who hired their students for internship, the university decided to offer a gift which represent the university of Sherbrooke. We contribute in this project by producing a glass concrete plates made with nano-cellulose fibers. All the team participated in this project and the results were just amazing.

The ACI Sherbrooke Student chapter thanks you for your attention.

aci]2017

University

aci **2**016

University

aci**)** 2015

University

Excellent

Excellent

Excellent