

SOLUTIONS FOR THE BUILT WORLD

Lee County Courthouse "Cathedral of the Prairie"

Significant Problems

- Constructed in 1900
- Reportedly Underpinned with Concrete Footing in 1911
- Repairs in 1979
- Restored in 2001-2004 via the Texas Historical Commission's Courthouse Program
 - Site Drainage Repairs
 - Steel Tension Tie Straps around Portico Walls
 - Balcony Repairs
- WJE Assessment in 2008

Background Assessment Repair Approach Conclusions

Foundation Plan

- Shallow, Unreinforced Masonry Spread Footing
- 6-Wythe Masonry Wall
- Supporting 37 Feet of 4-Wythe of Masonry Wall

Assessment

Background

Typical Floor Plan

- Central stair
- Connecting Arches

Background

Repair Approach

Second and Third Floor Plan

- Grand Courtroom
- Balcony

Background

Typical Elevations

North Porticos

South Porticos

Structural System

- Typical Masonry Walls
- Reinforced Cindercrete Slabs w/ Integral Beams and Joists
 - Joists
 - 4-inch Channels with Upturned Legs
 - Slight Arch
 - Beams
 - 12-inch Deep I-Shapes Embedded in Cindercrete
 - Supported at Ends
 - Load Bearing Walls
 - 12-inch I-Shapes for Longer Spans

Background

Repair Approach

Cracking of Masonry & Finishes

Background

Assessment

Repair Approach

Cracking of Masonry & Finishes

Out-of-Plane Walls

Background

Assessment

Repair Approach

Out-of-Plane Walls

Site Drainage

Geotechnical Investigation

- Fat Clay Soil on Site
- Plasticity Index between 32 and 64
- Medium to Very High shrink/swell potential

Background

 Varying Moisture Level and Liquidity Index between Interior and Perimeter

Assessment

What is going on?

- Relatively Stable Central Core
- Perimeter Movement Due to Poor Drainage and Expansive Clay Soil
- Unreinforced Masonry Spread Footing Unable to Transfer Tensile Stresses & Differential Movement
- Uneven Settlement
 Causing Out-of-Plane
 Wall Movement

Background

Assessment

Repair Approach

Challenges of Repair

Repair Approach

- Registered Historical Landmark
 - Repairs Must Be Consistent with Secretary of Interior's Standards
- Courthouse Open for Business
 - Noise, Vibrations, Safety, etc.
- Courthouse Employees Constantly
 Indicating Movement

Assessment

- Actual or Perceived??
- Accommodate Court Schedule
- Unforeseen Conditions

Background

Real-Time Monitoring

- Crack Gauges
 - Simple / Effective
 - 6 Total Gauges / Monitored
 Periodically
 - Locations: All Floors
- Remote Sensing System
 - Real-Time Monitoring
 - LVDT Sensors
 - 2 at Attic (East & West)
 - Tilt Sensors
 - 2 at Attic / 2 First Floor Walls

Background

Repair Approach

Perimeter Foundation

- Drilled Shafts
 - 25-Feet Deep
 - Load Transfer to Brittle Masonry Footing?
- Spread Footing
 - Continuously reinforced concrete footing
 - Resist local shrinking and swelling

Background

Assessment

Repair Approach

Continuous Spread Footing

"Leg and Leg" Approach

Excavate \rightarrow Dowels \rightarrow Lap Reinforcement \rightarrow Stirrups \rightarrow Placement \rightarrow Grout Strip

"Leg and Leg" Approach

"Leg and Leg" Approach

Grout Strip at Interface

Background

Assessment

Repair Approach

Exterior Corners

1911 Concrete Underpinning

Step Transitions at 1911 Footing

Voids in 1911 Footing

Voids in 1911 Footing

Step Transitions at 1911 Footing

Exterior Corners

Shoring at Corner Segment

Corner Reinforcement

South Wall Stabilization - Design

- Deflections / Lateral Load
- Mechanically Anchor Floor to Exterior Walls

Background

 Access to Main Elements (Core)

– Locations – What Levels?

Assessment

Tension Ties at Portico Walls?

- Need to Preserve **Historic Finishes**
- Want to Avoid **Unsightly Repairs**
- Steel Tie Rods with Plates or Straps?

Background

 Steel Tie Rods Used at **Upper Levels**

Assessment

Portico Second Level

- Use Existing Steel I-Shapes as Tension Ties
- Anchor to Exterior Wall
- Use Concrete Beam at Interior Wall

Background

Repair Approach

Concrete Beam at Interior Wall

Concrete Beam at Interior Wall

Successful Stabilization?

- Concrete Provided Unique Benefits for Repair
- 1911 vs. 2011
 Concrete Underpinning
- Integral Concrete Beam to Stabilize Wall

