The Art of Thermal Mass Modeling for Energy Conservation in Buildings, Part 1

ACI Spring 2012 Convention
March 18 – 21, Dallas, TX

Dr. Jian Zhang is a Commercial Building Energy Analyst at Pacific Northwest National Laboratory. At PNNL, he has worked on the development of ASHRAE Standards 90.1 and 189.1, ASHRAE Advanced Energy Design Guides, Advanced Energy Retrofit Guides, and other high performance building projects. He has extensive experience in computer modeling for commercial building energy performance. He is also a Consultant of ASHRAE Standard Project Committee 189.1. Before joining PNNL, he received his Ph.D. Degree in Building Engineering from Concordia University, Canada in 2009. During his graduate studies, he had been a key contributor to the IEA-ECBCS Annex 44 Integrating Environmentally Responsive Elements in Buildings, and Moisture Control for Exterior Wall Systems projects.

Outline

- Scope of Building Modeling
- Performance Criteria
- Modeling Heat Conduction
- Application Examples
- Summary

Scope of Building Modeling

- DOE Building Energy Software Tools Directory with 405 tools. By subjects:
 - Whole building analysis
 - Energy Simulation
 - Renewable Energy
 - Retrofit Analysis
 - Sustainability/Green Buildings
 - Codes and Standards
 - Materials, Components, Equipment and Systems
 - Other applications
- Building energy modeling (whole building energy simulation) is a subset of the energy simulation

http://apps1.eere.energy.gov/buildings/tools_directory/

INPUT
Design
Characteristics
Weather data

Building
Energy
Simulation
Software

OUTPUT
Whole Building
Energy Use
a lot more
Scope of Building Modeling

- Evaluate energy efficiency measures
- Show design compliance, Energy Cost Budget in ASHRAE Standard 90.1
 \[\text{design energy cost} \leq \text{energy cost budget} \]
- Show performance rating, LEED
 \[\% \text{ improvement} = \frac{\text{Baseline bldg. perf} - \text{proposed bldg. perf}}{\text{Baseline bldg. performance}} \]
- Conduct virtual experiments as research tools, e.g., HVAC control, day-lighting...

Performance Criteria (90.1 Appendix G)

- 8760 hours per year
- Hourly variations in occupancy, lighting, plugload, T setpoints, and HVAC operation
- Thermal mass effects
- Ten or more thermal zones
- Part-load performance curves for mechanical equipment

Performance Criteria (90.1 Appendix G)

- Capacity and efficiency correction curves for mechanical equipment
- Economizers with integrated control
- Baseline building design characteristics
- Performing design load calculations to determine equipment sizes
- Tested according to ASHRAE Standard 140 (Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs)

Common Software

- EnergyPlus
- EnergyPro
- EnerSim
- eQuest
- HAP
- IES-VE
- TRACE 700
- VisualDOE

Modeling Heat Conduction - EnergyPlus

- Conduction Transfer Function (CTF) – default method
 - Heat flux at a surface is determined using the flux history, surface temperature history and CTF coefficients of the wall element.
 - Thermal mass is accounted
- Finite Difference Solution Algorithms (for PCM)
 - Material properties (k, ρ, Cp) are T-dependent
 - Computation intensive
- Heat and Moisture Transfer Algorithms

Modeling Heat Conduction - EnergyPlus

- Define material
 - Thickness
 - Density
 - Conductivity
 - Specific heat capacity
- Define wall assembly (example)
 - 1st layer: 7 ¼” concrete panel
 - 2nd layer: R13 cavity insulation, 3.5 in. depth steel studs, 16” o.c.
 - 3rd layer: ½” gypsum board
Example 1: Retrofit EEM Evaluations
- Operation and occupancy are known
- Historical energy use are available
- Energy audit was conducted
- Calibrated energy model: assess the savings potential of energy efficiency measures (EEM) and their interactions

Location: Virginia
Building type: Retail
Built: 1987
Area: ~100,000 ft²
No. of stories: 1 level

Example 2: 50% Savings for QSR
- ASHRAE AEDG (Advanced Energy Design Guide)
- Quick-service restaurant, new construction
- Baseline meets ASHRAE 90.1-2004
- Climate specific advanced design packages - envelope, lighting, kitchen appliance and HVAC

Example 3: Code Development
- ANSI/ASHRAE/IESNA Standard 90.1 under continuous maintenance process
- ASHRAE had a goal of 30% savings for 90.1-2010 comparing to 90.1-2004.
- This project measures progress toward the 30% goal
- Book by book comparison
Example 3: Code development

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Climate Type</th>
<th>Representative City</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Very Hot - Humid</td>
<td>Miami, FL</td>
</tr>
<tr>
<td>1B</td>
<td>Very Hot - Dry</td>
<td>Riyadh, Saudi Arabia</td>
</tr>
<tr>
<td>2A</td>
<td>Hot - Humid</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>2B</td>
<td>Hot - Dry</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>3A</td>
<td>Warm - Humid</td>
<td>Memphis, TN</td>
</tr>
<tr>
<td>3B</td>
<td>Warm - Dry</td>
<td>El Paso, TX</td>
</tr>
<tr>
<td>3C</td>
<td>Warm - Marine</td>
<td>San Francisco, CA</td>
</tr>
<tr>
<td>3D</td>
<td>Mixed - Humid</td>
<td>Baltimore, MD</td>
</tr>
<tr>
<td>3E</td>
<td>Mixed - Dry</td>
<td>Albuquerque, NM</td>
</tr>
<tr>
<td>3F</td>
<td>Mixed - Marine</td>
<td>Salem, OR</td>
</tr>
<tr>
<td>4A</td>
<td>Cool - Humid</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>4B</td>
<td>Cool - Dry</td>
<td>Boise, ID</td>
</tr>
<tr>
<td>4C</td>
<td>Cool - Marine</td>
<td>Vancouver, BC</td>
</tr>
<tr>
<td>4D</td>
<td>Mixed - Humid</td>
<td>Burlington, VT</td>
</tr>
<tr>
<td>4E</td>
<td>Mixed - Dry</td>
<td>Helena, MT</td>
</tr>
<tr>
<td>5A</td>
<td>Very Cool - Humid</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>5B</td>
<td>Very Cold - Dry</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>5C</td>
<td>Very Cold - Marine</td>
<td>Portland, OR</td>
</tr>
<tr>
<td>7</td>
<td>Subarctic</td>
<td>Duluth, MN</td>
</tr>
<tr>
<td>8</td>
<td>Subarctic</td>
<td>Fairbanks, AK</td>
</tr>
</tbody>
</table>

PNNL Prototype Building Models

- Progress indicator methodology and prototype building models are documented in PNNL’s published report.
- 90.1 prototype building models (EnergyPlus input/output files) are published at DOE’s Building Energy Codes Program web site.
 - 16 prototype buildings
 - 17 climate locations
 - 90.1-2004, 90.1-2007 and 90.1-2010 code-compliant models
- Scorecards (building basic modeling information)
- National aggregated site energy savings results
- EnergyPlus weather files

Download PNNL Report at:
[

Download the 90.1 Prototype Building Models:
[
http://www.energycodes.gov/commercial/901models/]

Summary

- Building energy simulation programs are tools for:
 - EEM evaluation
 - Code compliance
 - Performance rating
- Performance criteria have been established to ensure confidence in results
- Current programs are capable to account for thermal mass and moisture transfer but they may require:
 - Detailed inputs
 - Computational time
 - Convergence issue
- Important decisions are being made based on simulations

Questions?

Jian Zhang
Pacific Northwest National Laboratory
j.zhang@pnnl.gov