Advantages of Slag-Silica Fume Ternary Binders for Production of Durable Concrete

Doug Hooton NSERC/CAC Chair in Durable & Sustainable Concrete

UNIVERSITY OF TORONTO
DEPARTMENT OF CIVIL ENGINEERING
General Advantages of SCM’s

The advantages of properly designed and cured concretes containing SCM’s are that lower permeability and chloride diffusion can be achieved:

1. There is more C-S-H formed which uses up Ca(OH)$_2$ and fills more space.
2. The reactions happen later, so that the new C-S-H subdivides and blocks the initial capillary pore system.
3. The porous aggregate transition zones (ITZ) become filled with C-S-H, reducing their influence.
4. With SCM's, the C-S-H which forms has lower Ca/Si. To make up for this, the C-S-H incorporates more alkalies (substituting for Ca). This reduces the alkalinity of the pore solution, making it less likely to attack reactive aggregates.

5. SCM’s with higher Al_2O_3 contents will also form C-A-S-H, (Al_2O_3 substituting for SiO_2) and other aluminate hydrates which will bind more chlorides and alkali.
Concerns with SCMs

- Often the initial rate of reaction is slower, especially at high replacement levels and at lower temperatures.
- This can be overcome by re-designing mixes to get early age properties, or by use of ternary mixtures—e.g. Silica fume with slag or ash; or slag mixed with high-alkali Class C fly ash.
- Rates of reaction increase with increasing temperature, so replacement levels often have to change with seasons.
Slag and Silica Fume Use in Ontario, Canada

- Ground Granulated Blast-Furnace Slag has been produced since 1976 and is used by most concrete producers.
- Silica Fume has been available since 1978 and Type GUb8SF blended cement since 1982.
- Slag-Silica Fume Ternary systems have been used since 1986 and are commonly whenever Silica Fume is used.
Slag Uses and Concerns

- Typically 25% cement replacement is used for general purpose use in concrete and also in ternary systems with silica fume.
- Slag can also provide improved resistance to chlorides, sulfates, and ASR when used at replacement levels of 35 to 50%.
- However, setting times and early age properties may be retarded at high replacement levels or in cold weather.
SF Blended Cement

- Type Gub-8SF cement typically contains 7 to 9% Silica Fume (±0.5%)
- Makes SF easier to transport
- This reduces SF handling problems at the concrete plant
- This makes SF easier to disperse in concrete
Concerns with Silica Fume

- Silica Fume is often specified for High Strength or High Performance Concrete but requires high-dose rates of HRWR.
- Construction concerns have included finishing problems and plastic cracking.
- Strength development is fast but not much beyond 28 days.
Early-age advantages:

- Lower HRWR doses needed
- Easier to place
- Less “sticky” to finish
- Fewer contractor complaints
- Good early age properties (strength and chloride resistance) due to SF, and continued later-age improvement due to Slag
- Lower heat rise
Admixtures add to cost of HPC
Improved Resistance to Fluid Ingress

• Silica Fume results in improved resistance to fluid penetration at early ages, but has less effect at later ages.

• Slag results in improved resistance to fluid penetration at ages beyond ~14 days that continues to further improve for along time.

• Using ternary mixtures gives the benefit of improved resistance at early ages combined with continued long-term improvements.
REDUCTION IN EARLY AGE WATER PERMEABILITY
of w/cm=0.45 Mortars

PERMEABILITY, K (m/s)

TIME (days)

OPC Control

25% Slag

8% Silica Fume

(McGrath, 1996)
Effect of Slag on Concrete (= [W] and w/cm)

<table>
<thead>
<tr>
<th>Slag %</th>
<th>Water</th>
<th>W/CM</th>
<th>91-day Strength (MPa)</th>
<th>RCPT (coulombs)</th>
<th>Permeability H$_2$O 10$^{-13}$ m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>0.45</td>
<td>35.8</td>
<td>5200</td>
<td>10.1</td>
</tr>
<tr>
<td>25</td>
<td>200</td>
<td>0.45</td>
<td>42.7</td>
<td>2450</td>
<td>5.4</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>0.45</td>
<td>42.8</td>
<td>1020</td>
<td>2.3</td>
</tr>
</tbody>
</table>

R. Bin Ahmad, 1991
Early-Age Concrete Permeability Results: Effect of Slag (calculated on inflow up to 7 days)

Nokken and Hooton, 2003

- Equivalent at 7 Days
- 35% Slag
- 10x better at 50 Days

0.40 OPC (135)
0.40 35% SG
Bulk Conductivity to 28 days

HPC mix has 6% SF and 25% Slag

Nokken & Hooton 2004
Diffusion rates decrease with time

\[D(t) = D_{REF} \left(\frac{t_{REF}}{t} \right)^m \]

Graph:
- **Y-axis:** Diffusion Value [m²/s]
- **X-axis:** Age [Days]
- **Graph Line:** Decreasing trend from 1E-13 to 1E-11
- **Points:**
 - \(t_1 \)
 - \(t_2 \)
- **Equation:**
 - \(D_{AVE} \)
Ternary Blends – Time-Dependant Diffusion

Thomas, 2000
ASTM C1202 Chloride Penetration Resistance -
Chloride Bulk Diffusion

![Graph showing chloride bulk diffusion values over age in days. Legend includes lines for 0.35, Plain, 0.35, 8 % SF, and 0.35, 8 %SF, 35 % SG.]
Water Permeability of Concretes at 90 days (cured 4 days)

<table>
<thead>
<tr>
<th>Cement</th>
<th>w/cm</th>
<th>K (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>0.69</td>
<td>3.7 \times 10^{-12}</td>
</tr>
<tr>
<td>OPC</td>
<td>0.49</td>
<td>2.8 \times 10^{-13}</td>
</tr>
<tr>
<td>8% SF + 25% Slag</td>
<td>0.29</td>
<td>2.0 \times 10^{-16}</td>
</tr>
</tbody>
</table>

El-Dieb & Hooton
1995, CCR
Effect of Alumina in SCMs on chloride binding

- \(w/cm = 0.5 \) @ 56d
- 25% Slag or Fly Ash increases binding
- 8% Silica Fume decreases chloride binding
- Ternary mixes result in increased levels of binding.

H. Zibara, PhD Thesis, U of T
Scotia Plaza Toronto

- Built in 1986-87.
- The first of >10 towers in Toronto to use silica fume plus slag (7.8%+25%).
- 70MPa specified strength (later ones were 85 Mpa)
- All concrete was truck mixed, cooled with liquid nitrogen, and pumped.
- Slumps were >200mm and 90d strengths >90MPa at w/cm=0.31.
High Strength Concrete in Toronto (70 MPa)

<table>
<thead>
<tr>
<th></th>
<th>Scotia Plaza</th>
<th>BCE Place Phase I</th>
<th>BCE Place Phase II</th>
<th>Bay Adelaide</th>
<th>Simcoe Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Tests</td>
<td>143</td>
<td>287</td>
<td>294</td>
<td>93</td>
<td>139</td>
</tr>
<tr>
<td>91 day strength</td>
<td>93</td>
<td>87</td>
<td>94</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>Std. dev. (MPa)</td>
<td>6.8</td>
<td>8.1</td>
<td>6.0</td>
<td>5.8</td>
<td>5.1</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>7.3</td>
<td>9.3</td>
<td>6.4</td>
<td>6.1</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Before SF-blended cements
High Strength Concrete in Toronto (85 MPa)

<table>
<thead>
<tr>
<th></th>
<th>BCE Place Phase II</th>
<th>Bay Adelaide</th>
<th>Simcoe Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Tests</td>
<td>281</td>
<td>137</td>
<td>97</td>
</tr>
<tr>
<td>91 day strength</td>
<td>99</td>
<td>97</td>
<td>105</td>
</tr>
<tr>
<td>Std. dev. (MPa)</td>
<td>5.6</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>5.7</td>
<td>5.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Courtesy of J. Ryell
Ternary Cements for Pre-Cast Concrete

- Ternary systems can develop high-early strength in accelerated curing and help prevent ASR and chloride penetration.
- 18h strengths are similar to Type HE cements for release of PT wires.
- Chloride resistance of 65°C-cured ternary concrete is not adversely affected, unlike Type HE portland cement.
Concretes
W/CM=0.3, CM=460kg/m³, 5-8%Air, Slump=150-200mm

Accelerated Curing Program

- 23°C until initial set (6-8 h)
- 20°C/h rise to 65°C
- Hold at 65°C for 9 h
- Cool at 20°C/h

Results compared to moist curing at 23°C
Strength after 65°C Cure (MPa)
(7.5% Air, 150-200mm Slump)

<table>
<thead>
<tr>
<th>Concrete</th>
<th>18 Hour</th>
<th>28 Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>31.2</td>
<td>45.4</td>
</tr>
<tr>
<td>4% SF</td>
<td>40.9</td>
<td>55.8</td>
</tr>
<tr>
<td>8% SF</td>
<td>45.4</td>
<td>54.1</td>
</tr>
<tr>
<td>8% SF+ 25% Slag</td>
<td>40.5</td>
<td>58.1</td>
</tr>
</tbody>
</table>
RCPT (coulombs) at 28days

<table>
<thead>
<tr>
<th>Cementing Materials</th>
<th>23C 6 days moist</th>
<th>65C heat + air cured</th>
<th>RCPT 65C/RCPT 23C</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>2280</td>
<td>3120</td>
<td>1.4x</td>
</tr>
<tr>
<td>4% SF</td>
<td>520</td>
<td>1050</td>
<td>2.0x</td>
</tr>
<tr>
<td>8% SF</td>
<td>270</td>
<td>230</td>
<td>0.9x</td>
</tr>
<tr>
<td>4% SF + 25% slag</td>
<td>310</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8% SF + 25% slag</td>
<td>170</td>
<td>130</td>
<td>0.8x</td>
</tr>
<tr>
<td>T10 SF + 25% slag</td>
<td>260</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
120 Day Chloride Bulk Diffusion

<table>
<thead>
<tr>
<th>Concrete</th>
<th>$D_a \times 10^{-12}$ m2/s (23°C Cure)</th>
<th>$D_a \times 10^{-12}$ m2/s (65°C Cure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GU Cement</td>
<td>32.7</td>
<td>61.4</td>
</tr>
<tr>
<td>4% SF</td>
<td>4.3</td>
<td>13.4</td>
</tr>
<tr>
<td>8% SF</td>
<td>2.4</td>
<td>3.8</td>
</tr>
<tr>
<td>4% SF+25% S</td>
<td>4.4</td>
<td>-</td>
</tr>
<tr>
<td>8% SF+25% S</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>GUUbSF+25%S</td>
<td>4.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Titherington & Hooton 2004

w/cm = 0.30 air-entrained mixes
120 Day, 5M, 40°C Chloride Diffusion

![Diffusion Coefficient Graph]

- **OPC**
- **4%SF**
- **8%SF**
- **4%SF + 25%SL**
- **8%SF + 25%SL**
- **T10SF + 25%SL**

Graph Details:
- **Y-axis:** Diffusion Coefficient [m^2/s x 10^-12]
- **X-axis:** Layers and Conditions

Legend:
- **Black:** AMBIENT
- **Gray:** STEAM
- **White:** STEAM+MOIST
TTC - Subway Toronto

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 10SF (kg/m³)</td>
<td>305</td>
<td>400 min</td>
</tr>
<tr>
<td>Slag (kg/m³)</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>W/CM</td>
<td>0.31</td>
<td>0.35 max</td>
</tr>
<tr>
<td>28-day Strength (MPa)</td>
<td>74.9</td>
<td>60 min</td>
</tr>
<tr>
<td>$D_a \times 10^{-15}$ m²/s</td>
<td>621</td>
<td>1500 max</td>
</tr>
<tr>
<td>$k \times 10^{-15}$ m/s</td>
<td>1.34</td>
<td>100 max</td>
</tr>
</tbody>
</table>
Summary of Diffusion Coefficients and ASTM C1202 Rapid Chloride Permeability Values for TTC Subway Project

<table>
<thead>
<tr>
<th>Die Cast</th>
<th>Chloride Diffusion $x10^{15}$ m2/s</th>
<th>Rapid Chloride Permeability</th>
<th>Charge Passed after 6 hours (Coulombs)*</th>
<th>Age at Test (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40D</td>
<td>80D</td>
<td>120D</td>
<td></td>
</tr>
<tr>
<td>April 30/96</td>
<td>1,087</td>
<td>480</td>
<td>783</td>
<td>434</td>
</tr>
<tr>
<td>June 11/96</td>
<td>583</td>
<td>574</td>
<td>784</td>
<td>484</td>
</tr>
<tr>
<td>July 23/96</td>
<td>604</td>
<td>1,030</td>
<td>590</td>
<td>443</td>
</tr>
<tr>
<td>Sept. 12/96</td>
<td>1,320</td>
<td>1,112</td>
<td>517</td>
<td>515</td>
</tr>
<tr>
<td>Oct. 24/96</td>
<td>510</td>
<td>464</td>
<td>325</td>
<td>394</td>
</tr>
<tr>
<td>Dec. 5/96</td>
<td>499</td>
<td>429</td>
<td>972</td>
<td>91</td>
</tr>
</tbody>
</table>

Cores stored moist for initial 28 days, then in air until tested.

Ref. Hart, Ryell, and Thomas, 1997
Bridge Decks at Toronto Airport

- In 1999, 4 bridge decks were placed using Type GUbSF cement + 25% Slag at 0.40 w/cm using the MTO High Performance Concrete Spec. but spec’d at 35MPa (but >50MPA achieved)
- High corrosion resistance was required.
- The concretes were placed in cold weather in 16h continuous placements of 1200m³.
- After that, 40 bridge structures and terminal decks at the airport used similar concrete mixtures. The bridges have been recently inspected and all are performing well.
• Slump: 170 ± 40mm (7 ± 1.5in.)
• Air: 6.9%, Spacing: 0.202mm
• Strength: 50.5MPa (7300psi),
 std.dev. = 3.5MPa (500psi)
• RCPT: 590 coulombs
• Bulk Diffusion \((D_a) = 2.5 \times 10^{-12} \text{ m}^2/\text{s}\)
2900m² (96,000SF) top level parking deck exposed to de-icing salts and freezing.

395kg/m³ (658pcy) of Type 10SF cement and 30% slag = 36% SCM
W/CM = 0.37
45 MPa (6500psi), air-entrained.
Pumped
185 coulombs at 60 days
Dcl = 2.5 × 10⁻¹² m²/s
ASR
Reduction in Pore Solution Alkalinity with SCMs (Slag + SF)

When pore solution alkalinity was < 0.3 M, no ASR expansion in ASTM C1293 Concrete prism tests after 2 years.
2-Year Paste Specimen Pore Solution Alkalinity

Bleszynski 2002

Theoretical Effect of an Inert Diluent

Hydroxyl Ion Concentration [mM/l]

Level of Slag Replacement (% Mass)

ASR Threshold
But without Alumina to stabilize the alkali in the C-S-H, alkali is slowly released to the pore solution.
Concrete Prism Expansion
Spratt Aggregate - Silica Fume or Slag

Bleszynski et al
Concrete Prism Expansion
Spratt Aggregate - Ternary Blends

Expansion [%] vs Time (days)

- Control
- Silica Fume/Slag

CSA LIMIT

Time (days) 0 300 600 900
1991 MTO Site
Kingston, Ont.

6 Concretes: 420kg/m³, Spratt Agg.
HAPC
LAPC
25% slag
50% slag
18% fly ash
25% slag + 3.8% silica fume
20-year old 0.6x0.6x2.0 m concrete beams exposed outdoors in Kingston (mixes: 420kg/m\(^3\))

Hooton, Rogers et al, 2013
Strengths of Air-entrained Concretes cured at 23 °C with limestone and SCMs

<table>
<thead>
<tr>
<th>Mix Identification (all 400 kg/m3 (666 pcy mixes))</th>
<th>% clinker in binder</th>
<th>w/cm</th>
<th>Compressive Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 day</td>
</tr>
<tr>
<td>GU Cement Control</td>
<td>89*</td>
<td>0.40</td>
<td>39.3</td>
</tr>
<tr>
<td>GU + 40% Slag</td>
<td>53</td>
<td>0.40</td>
<td>32.8</td>
</tr>
<tr>
<td>GUL9 + 40% Slag</td>
<td>50</td>
<td>0.40</td>
<td>36.1</td>
</tr>
<tr>
<td>GUL9 + 50% Slag</td>
<td>41</td>
<td>0.40</td>
<td>34.6</td>
</tr>
<tr>
<td>GUL15 + 40% Slag</td>
<td>46</td>
<td>0.40</td>
<td>37.1</td>
</tr>
<tr>
<td>GUL15 + 50% Slag</td>
<td>38</td>
<td>0.40</td>
<td>36.3</td>
</tr>
<tr>
<td>GUL15+ 6% Silica Fume + 25% Slag</td>
<td>53</td>
<td>0.40</td>
<td>46.0</td>
</tr>
</tbody>
</table>

* 3.5% limestone and 8% gypsum

U. of Toronto Field site data
Permeability Index of Air-entrained Concretes Cured at 23 °C with Limestone and SCMs

Mix Identification (all 400 kg/m³ (666 pcy mixes))

<table>
<thead>
<tr>
<th>Mix Identification</th>
<th>% Clinker in Binder</th>
<th>w/cm</th>
<th>Rapid Chloride Permeability ASTM C1202 (Coulombs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GU Cement Control</td>
<td>89</td>
<td>0.40</td>
<td>2384, 2042, 1192</td>
</tr>
<tr>
<td>GU + 40% Slag</td>
<td>53</td>
<td>0.40</td>
<td>800, 766, 510</td>
</tr>
<tr>
<td>PLC 9% + 40% Slag</td>
<td>50</td>
<td>0.40</td>
<td>867, 693, 499</td>
</tr>
<tr>
<td>PLC 9% + 50% Slag</td>
<td>41</td>
<td>0.40</td>
<td>625, 553, 419</td>
</tr>
<tr>
<td>PLC 15% + 40% Slag</td>
<td>46</td>
<td>0.40</td>
<td>749, 581, 441</td>
</tr>
<tr>
<td>PLC 15% + 50% Slag</td>
<td>38</td>
<td>0.40</td>
<td>525, 438, 347</td>
</tr>
<tr>
<td>PLC 15% + 6% Silica Fume + 25% Slag</td>
<td>53</td>
<td>0.40</td>
<td>357, 296, 300</td>
</tr>
</tbody>
</table>

CSA A23.1 limit is 1500 coulombs @ 56d for C-1 Exposure
Summary

• Ternary cementitious systems work synergistically to combine the best properties of both Slag and Silica Fume.

• High-Performance Concretes are easier to produce, place, and finish with ternary systems.

• Physical properties and durability are also enhanced at both early and later ages.
Conclusions

Appropriate ternary blend combinations exhibit greater performance than the control mix or mixes with a single SCM in terms of:

- Compressive strength (early and late age)
- Controlling damaging expansion due to ASR
- Resistance to the ingress of chlorides
- Resistance to sulfate attack

The de-icer salt scaling field performance of ternary mixes is also good.