INTERNALLY CURED CONCRETE PAVEMENT FOR INTERMODAL FACILITY

HEAVY-DUTY CONCRETE PAVEMENTS, PART 1/2

ACI Spring 2015 Convention
Kansas City
April 12, 2015

Chetana Rao, Ph.D., Rao Research
Michael I. Darter, ARA Inc.
Research References and Acknowledgements

Special thanks to
- John Ries, FACI
 - ESCSI
- Victor H. Villarreal, FACI
 - TXI/US Concrete

Villarreal, V., and Crocker, D.A.
“Better Pavements through Internal Hydration - Taking lightweight aggregate to the streets”
Concrete International, Feb 2007
Outline for Presentation

• Details of Intermodal facility with ICC pavement construction
 - Field observations
• Internally cured concrete (ICC) and potential mixture advantages for concrete pavements
 - Mechanical properties
 - Durability
• AASHTO Pavement Design Guide Performance prediction for intermodal facility pavement slabs
Union Pacific Intermodal Facility
Union Pacific Intermodal Facility

Hutchins, TX - ~12 miles from Dallas, TX
Multimodal Facility

360 acre facility
Facility Features

• 365,000 lift capacity and 4,000 parking stalls
• 10-lane automated gate system entrance
• 24-hour, seven-day-a-week operations
• Four loading tracks
• Future expansion
• Paving in 2005, and construction throughout the year

Source: Union Pacific Railroad
www.uprr.com
Multimodal Facility
View of Security/Gate Entry
Facility’s Maximum Traffic Zone
Excellent Performance after 8 years
Two locations with spalls and one slab with cracking – That’s all!
Internally Cured Concrete Pavement
INTERNAL CURING
Internally Cured Concrete

- Use of pre-wet lightweight aggregates (LWA) as partial replacement to coarse/ fine/ coarse and fine fractions
 - For example 30 percent of sand
 - Replace 500 lb of coarse and fine with 300 lb of intermediate size LWA

Physical and mechanical properties favorable for performance

(Castro et al., 2010).
ICC Mixture and Control Mix Design

<table>
<thead>
<tr>
<th>Material</th>
<th>Control</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement (lb/yd³)</td>
<td>451</td>
<td>451</td>
</tr>
<tr>
<td>Fly ash (lb/yd³)</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>Coarse aggregate (lb/yd³)</td>
<td>1840</td>
<td>1540 {-300lb}</td>
</tr>
<tr>
<td>Intermediate LWA (lb/yd³)</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Fine aggregate (lb/yd³)</td>
<td>1301</td>
<td>1099 {-200 lb}</td>
</tr>
<tr>
<td>Water (lb/yd³)</td>
<td>242</td>
<td>242</td>
</tr>
<tr>
<td>Water reducer (fl oz/100 lb)</td>
<td>As needed</td>
<td></td>
</tr>
<tr>
<td>AEA</td>
<td>3.0 to 6.0%</td>
<td></td>
</tr>
<tr>
<td>Air content (3-6%)</td>
<td>2 ± 1 in.</td>
<td></td>
</tr>
<tr>
<td>Compressive strength (psi)</td>
<td>4,500</td>
<td></td>
</tr>
</tbody>
</table>

Villarreal, V., et al., 2007
Impact of IC on Concrete Properties – The Basics

Steady and prolonged moisture supply from LWA

Reduced mass from aggregate

Improved hydration products
- Durability benefits
- Lower early age shrinkage
- Reduced stresses from restraint

Enhanced mechanical properties
- Lower unit weight (6pcf)
- Lower elastic modulus (5%)
- Lower CTE (5%)
- Higher strength (5-20%)
Potential Effect of Reduced Shrinkage on Pavement Performance

Reduced early autogenous shrinkage

Permanent Influence
- Effects slab upward curling
- Lowers zero stress temperature

Performance Benefits
- Reduces premature shrinkage cracking
- Affects crack spacing and width in CRCP and rate of crack development
- Affects transverse crack development in JPCP
Potential Impact of Temperature & Moisture On Curling of Slabs

CONVENTIONAL CONCRETE
- Increased curl
 - From high moisture gradient through slab
- Moisture gradient
 - High
 - Low

CONCRETE WITH INTERNAL CURING
- Reduced curl due to lower shrinkage (ICC pavement)
- Moisture gradient
 - High
 - Low

CONCRETE PLACEMENT AND FINISHING STAGES
- Flat slab at construction
- Built-in temperature gradient (upward curl)

CONCRETE CURING AND EARLY AGE SHRINKAGE
- Positive gradient (Zero stress temp)
- Zero gradient

Temperature vs. Depth:
- **CONVENTIONAL CONCRETE**
 - Positive gradient (Zero stress temp)
 - Zero gradient

- **CONCRETE WITH INTERNAL CURING**
 - Reduced curl due to lower shrinkage (ICC pavement)

- **CONCRETE CURING AND EARLY AGE SHRINKAGE**
 - Moisture gradient
 - High
 - Low
Upward Slab Curl Causes Cracking
Transverse Fatigue Cracking (Top-Down) I-80 PA

20-ft Joint Spacing 13-in Slab (5-years)
Photo of Transverse & Longitudinal Top Down Cracking
Plastic Shrinkage Cracks
Interaction Effects – Cannot Isolate Single Cause for Performance Benefits

- Reduced CTE
- Lower unit weight
- Reduced modulus
- Reduced built-in stresses
- Higher strength

Suitable for use when fly ash is incorporated in mix design

Depends on
- Range of temperature changes in local climate
- Traffic level and traffic characteristics
- Slab thickness
- Aggregate type
AASHTOWare
Pavement M-E Analysis
– Dallas Intermodal ICC Pavement
Project Analysis Details

• Assume about 240 trucks per day per lane
 - Class 9 trucks single trailer trucks

• Pavement Structure
 - 8.5 inch JPCP
 - 12 inch aggregate base on subgrade

• Construction through several months (all seasons)
 - Measured zero curling in the slab with string line

• 60-yr analysis period
Concrete Inputs (Measured & Estimated)

<table>
<thead>
<tr>
<th>Inputs (or Calculated Values)</th>
<th>Control</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit weight, pcf</td>
<td>145</td>
<td>137</td>
</tr>
<tr>
<td>CTE, $x 10^{-6}$ in/in/°F</td>
<td>4.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Compressive strength, psi</td>
<td>5130</td>
<td>6070</td>
</tr>
<tr>
<td>Elastic modulus, psi</td>
<td>4,127,000</td>
<td>4,123,000</td>
</tr>
<tr>
<td>Permanent deltaT</td>
<td>-10F</td>
<td>-10F</td>
</tr>
<tr>
<td>Ultimate shrinkage, $x 10^{-6}$ in./in.</td>
<td>611</td>
<td>592</td>
</tr>
<tr>
<td>Calculated by program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/cm ratio</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>Base layer</td>
<td>12” crushed stone aggregate</td>
<td></td>
</tr>
<tr>
<td>Subgrade</td>
<td>AASHTO A-7-6</td>
<td></td>
</tr>
</tbody>
</table>
Predicted Performance, Transverse Cracking

- 8.5-inch JPCP - CONTROL
- 8.5-inch JPCP - ICC

ICC JPCP predicts one-half or less cracking over 60-years (Note: No concrete durability problems were noted during the field survey at 7 years age. No upward curling was measured on several slabs).
Predicted Performance, Faulting and Roughness

- **8.5-inch JPCP - CONTROL**

- **8.5-inch JPCP - ICC**
Other Field Project
ICC Pavements in DFW area

SH121 CRCP

Residential street
Conclusions

• Changes in mixture properties with small replacement of normal weight aggregates with prewetted aggregates, i.e. ICC
 - Changes in properties are favorable for pavement performance
• M-E analysis validates excellent performance observed on field
 - ICC properties are within the range of values applicable for M-E analysis
 - Long-term projections seem reasonable
 - Will reduce initial construction costs if proper inputs for ICC are used in design
• ICC used in a heavy-duty pavement application has shown excellent field performance and is validated with M-E analysis
THANK YOU.

Chetana Rao, Ph.D.
Rao Research and Consulting
University of Illinois Research Park
(217) 369-6865
Crao@raorc.com