Recent Advances in ASR Test Methods and Understanding Mitigation Mechanisms, Part 1

ACI Spring 2012 Convention
March 18 – 21, Dallas, TX

Toy S. Poole was formally educated at U. of North Carolina, Medical U. of South Carolina, Clemson U. and Indiana U. in chemistry, biochemistry, and biology. He worked for the US Army Corps of Engineers for 30 years at the Concrete Laboratory, Engineer Research and Development Center (ERDC) – formerly Waterways Experiment Station. He retired in 2010 and is currently employed by the CTL Group.

Alkali-Aggregate Reaction
What Our Current Approach Tells Us and What is Doesn’t

Toy S. Poole (1946 -)

- Education:
 - BS Chemistry, PhD Zoology
- 32 y - Corps of Engineers.
 - Retired 2010
 - Live in Austin, Texas
- Currently employed:
 - CTL Group
 - Consulting with Corps of Engineers
- ASTM since 1985
 - Committees C1 (cement) and C9 (concrete)
 - Board of Directors

What Current Guidance Does Do

- Major Improvements:
 - Identification of reactive materials
 - Identification of reasonable mitigation procedures
 - Development of reasonably comprehensive concrete specifications

Purpose of Presentation

One Facility
Owner’s Perspective
A Little History on Guidance

Historical - ASR: Before 1940
- ASR in Major Civil Works Projects
- Parker Dam 1938
- Copper Basin Dam – 1938
- Coolidge Dam – 1928
- Stewart Mtn Dam – 1930
- American Falls Dam – 1927
- Owyhee Dam – 1932
- Also Transportation Structures

Historical - ASR: 1940 – early 1980’s
- Identification
 - 1940 – first publications
 - Importance of cement alkalis
- Low-alkali cement
 - ≤0.60%
- Test methods
 - C 289 quick chemical
 - C 227 – mortar bar
 - C 441 – mod. C 227

Historical - ASR: Late 1980’s – Present
- Problems in guidance
 - Test methods - detection errors
 - Specifications – insufficiently protective
- New TM’s and Spec’s
 - C 1260
 - C 1293 – reference condition
 - C 1567
- Field Service Record
- Comprehensive Concrete Specification
 - FWHA, ASTM

New Reference Condition?

Commonly Used Scheme
- Mitigation
 - SCM’s - primary
 - alkali’s – deemphasized
- Specifications (ΔL%) (C 1293)
 - 0.10% mortar
 - 0.04% concrete
Historical - ACR

- Identification & Early Work
 - 1950’s – 60’s
 - Screening – chemistry, microscopy
 - C 586 – rock prism
 - C 1105 – concrete prism

- Sporadic work on mechanism
- Renewed interest

What Current Guidance Doesn’t Tell Us

Field Service Record

- C 33
- Rarely useful in practice
 - Variable conditions
 - Variable materials
 - Sufficient age (10 y)
 - Lack of records

Some Materials Not Covered

- Blended cements
- C 1157 cements
- Lithium
- Specialty cements

Alkali Content of Materials

- Performance methods do not account for
 - Alkali-content of cements
- Alkali loading ~2 – 4 kg Na₂O/ m³
 - Based only cement alkalis
 - Low alkali cement
 - Alkalis in SCM’s

Service Conditions: Alkali Redistribution

- Alkali Content of Mortar, Total as Na₂O

Depth from surface, cm
Service Conditions: Ambient Temperatures

\[\Delta T = 15 \, ^\circ C \]

Different temperature activation among aggregates?

Lab Tests & Long-Term Projections

- Assumptions on Performance Tests
 - Alkali content simulates highest cement alkali condition
 - Test time-temperature simulate very long service conditions
- Translation: Lab - Field
 - Ottawa: 10 – 25 y ???
 - Texas: 5 – 10 y ???

Specificity of Test Methods: ASR vs ACR

- Assumption: Methods are specific either to ASR or ACR
 - C 1260 is specific to ASR
 - C 586 is specific to ACR
 - C 1105 is specific to ACR

Combined CA – FA Testing

- Mortar Bar
 - Fine Aggr: \[\Delta L = 0.10\% \]
 - Concrete Prism: \[\Delta L = 0.04\% \]
- Coarse Aggr: \[\Delta L = 0.10\% \]
- Coarse & Fine Aggr: \[\Delta L = 0.08\% \]

Details of Interpretation – e.g. C 1293

What Do We Need to Do?

- Maybe better record keeping and monitoring
- Develop better test methods
 - Alkali contents of materials
 - Non-standard materials
- Develop information on aggregate activation E