

Summary

- Introduction
- Outreach for 5th graders
- Results
- Working with pre service teachers
- Conclusions

A Grand Challenge

- Future engineers must provide sustainable, durable, and rapidly constructed infrastructure at similar or lower costs
- They also must maintain existing infrastructure for as long as possible.

A Grand Challenge

- \$2.2 trillion is needed to restore US infrastructure.
- US National Academy of Engineering has listed infrastructure renewal as one of its grand challenges.

A Grand Challenge

- Less students are choosing engineering as a major (Jeffers et al., 2004)
- Snell and Snell (1992) found that only 1% of 6th graders wanted to be an engineer, while almost 22% wanted to be a medical doctor.

A Grand Challenge

- Many sources report that by 6th grade, students have already decided whether they are interested in a career in advanced math and science
- At OSU students that start in a math below calculus have <1% to graduate in engineering

A Grand Challenge

- The US Education System is trying to "adjust"
- "Next Generation Science Standards" now includes engineering in elementary education

A Grand Challenge

- Current teachers are not comfortable with engineering and don't really know what it is
- Many Superintendents have suggested re labeling science as engineering with little changes

A Grand Challenge

- We need to find ways to introduce engineering careers and concepts to elementary age students in engaging ways
- We also need to help their teachers to become more comfortable teaching these topics

What Can We Do?

Why is outreach important?

- Essential for future generations
- Rewarding
- Promotes your organization
- Required on many grants

A Research Question How can I best use my time to positively impact the attitude and knowledge of engineering for 5th grade students? Cost – benefit analysis = <u>impact</u> my time

Overview

- To do this we:
 - Developed age appropriate and engaging lessons
 - Quantified the knowledge and understanding of engineering concepts before and after my lessons
 - Used three delivery models that used to technology to develop the same content with different amounts of my time

Curriculum Created three modules that are 25 minutes each Two objectives for each module Hands on / lesson / hands on

	Res	ults		
	n	Pre	Post	p
		Mean	Mean	
	What is	an Engine	er?	
Expert Led	14	39.09	50.2	0.004
Expert Visit	80	39.61	60.59	<.001
Virtual	73	41.31	52.2	<.001
	What is	Technolog	y?	
Expert Led	14	57.5	67.86	0.003
Expert Visit	80	50.25	59.31	<.001
Virtual	73	51.51	58.01	<.001
	Enginee	ering Attitu	des	
Expert Led	14	53.79	53.5	0.81
Expert Visit	80	56.36	59.96	0.01
Virtual	73	60.33	65.3	<.001

Summary

- For these students and measurement techniques:
- The expert led students did not show increased change when compared to the other delivery methods
- There was little difference between whether I visited once or never

• This suggests that subject experts should spend their time developing curriculum and training teachers on how to present it

Summary

- The teacher results does not match the 5th grade student data
- The expert visit was more effective then the virtual lessons
- Neither group showed an understanding of how engineers use math and science

What should we do different? Perhaps we need a different approach to train teachers Changes could be made in: Different curriculum

- Increased expert time with teachers
- Use assignments where they prepare curriculum

The Future!

• We already reach 280 students/year

• We will keep reaching this with no extra money

• It costs us roughly \$350 to add a new school to the program (70 kids)

• This one time cost will cover that school for roughly 5 years (350 kids or \$1 per child)

How Can you Help?

 If you know a company, individual, or grant that would be interested in helping sponsor a school then please let me know

- The teacher needs one day of training
- Please do your part and help out locally
- I know we are all busy but these efforts can make a big difference

Conclusion

• Developing our future engineers is important!

• The outreach curriculum presented was shown to make a positive impact on 5th graders about engineering concepts and professions

• Impact was observed for all of the curriculum delivery models

Conclusion

• There was no measurable difference for the impact on 5th graders despite the difference in the time commitment by the subject matter expert

• It is recommended to use subject matter expert time to develop content and train teachers on how to deliver it

Conclusion

• The education majors did not have the same response as the 5th graders.

• More work is needed to improve these lessons

• Quantitative comparison methods are useful to determine the effectiveness of outreach efforts

www.engineeringiseverywhere.com

WITH DR. TYLER LEY

