Innovations in Chemical Admixture Technology as Related to Sustainability, Part 2

ACI Spring 2012 Convention
March 18 – 21, Dallas, TX

Deepak Kanitkar is currently working with M/s Chembond Chemicals Limited in the Construction Chemicals Division. He completed his B. Sc. in Chemistry at Mumbai University and completed his Diploma in Paint Technology at UDCT Mumbai.

Deepak Kanitkar
DGM - Technology & Business Development
Chembond Chemicals Limited
INDIA
ACI Spring Convention 2012, Dallas

Outlines
- Sustainable concrete
- Materials for chemical admixtures
- Combinations of Lignosulfonates and Polycarboxylate Ethers
- Experimental work
- Results and discussions
- Conclusions
- Path forward

Concrete
- Combination of
- Organic (Synthetic) and
- Natural ingredients
- Cast and Cured with / without
- Reinforcement in the
- Environment using
- Technology and
- Effective human resources

Sustainable Concrete
HOW TO

- SUSTAINABLE CONCRETE
 - Optimization of materials
 - Recycling and waste management
 - Improvement and optimization of structures
 - Innovation in materials and processes

ROLE OF CONCRETE ADMIXTURES

- CONCRETE ADMIXTURES
 - Reduced cement
 - Reduced CO₂ emission
 - Reduced W : B ratio
 - Increased workability retention
 - Increased compressive strength
 - Reduces rejections / repairs
 - Reduces element mass

MATERIALS

LIGNOSULFONATES (LS)
- Green and sustainable chemical
- Carbon content of LS is 400 gm. / kg.
- 1.5 kg of CO₂ is withdrawn from atmosphere/kg of LS
- Steric + Electrostatic repulsion.
- Excellent compatibility with SNF, SMF and PCEs.
- Most grades are compatible with Alternative Cementitious Materials.

SULFONATED NAPTHALENE FORMALDEHYDE (SNF)
- Made using Napthelene, Formaldehyde and H₂SO₄.
- Works well for concretes up to 60 MPa.
- Better initial slump than LS.
- Compatible with most retarders and LS
- Long retention of slump is possible.
- Generally not compatible with PCEs.

POLYCARBOXYLATE ETHERS (PCE)
- Excellent dispersion helps high strengths
- Steric repulsion results in good water reduction at very low dosages.
- SCC can be made most of the times, without the use of VMAs
- Opens opportunities to obtain results with variety of cement types and ACMs.
- Dosage is very sensitive.
- Compatibility with retarders and defoamers is critical.
COMBINATIONS OF LIGNOSULFONATE AND PCE’s

ASPECTS
- Synergy
- Cost
- Versatility
- Foaming tendency
- Compatibility
- Workability
- Strength development
- Cement compatibility

SCOPE
- Study Ca-LS and Na-LS combinations with PC-WR. The results are compared with SNF : LS combinations
- Na-LS from 2 different sources, PCE’s from 3 different sources and Ca-LS from single source
- Concrete trials at two different dosages

EXPERIMENTAL WORK

CONCRETE PROPORTIONS

<table>
<thead>
<tr>
<th>Material</th>
<th>Material Type</th>
<th>Dry Wt</th>
<th>Moist</th>
<th>W.A.</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cementitious</td>
<td>UltraTech OPC 33</td>
<td>416</td>
<td></td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>Fly Ash</td>
<td></td>
<td>99</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>OA2, 20 HH</td>
<td>789</td>
<td>0</td>
<td>0.65</td>
<td>794</td>
</tr>
<tr>
<td>FA1, 20 HH</td>
<td>672</td>
<td>0</td>
<td>0.60</td>
<td>676</td>
<td></td>
</tr>
<tr>
<td>FA2, B. SAND</td>
<td>838</td>
<td>0</td>
<td>0.00</td>
<td>838</td>
<td></td>
</tr>
<tr>
<td>FA1, C. SAND</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Admixture</td>
<td>Sample 4</td>
<td>3.6</td>
<td></td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Local Source</td>
<td>150</td>
<td></td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Theoretical plastic density =</td>
<td>2561</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water / Cement Ratio =</td>
<td>0.30</td>
<td>26.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMBINED GRADATION
SETTING TIMES AT 0.7% DOSAGE

WORKABILITY AT 0.7 % DOSAGE

COMPRESSIVE STRENGTHS AT 0.7% DOSAGE

SETTING TIMES AT 0.9 % DOSAGES

WORKABILITY AT 0.9% DOSAGE

COMPRESSIVE STRENGTHS AT 0.9 % DOSAGE
COMPATIBILITY, SETTING TIME AND WORKABILITY

- Compatibility of PC-WR and LS combinations has been established.
- At 25°C, all formulations at 0.7 and 0.9 % dosages are near to the requirement of ASTM C-494 type G, for setting time.
- As the dosage is low retardation is under control.
- At 0.7% PC-WR : PC-SR and their combination, gives good workability retention.
- 50 : 50 combinations of PC-WR and NAL’s give good initial workability but the slump drops quickly after 30 minutes.

COMPRESSIVE STRENGTH AND AIR CONTENT

- Best compressive strength achieved @ 0.7% dosage.
- Compressive strengths
 - At 0.7% dosage
 - Pure PCE’s > 75:25 PCE : LS > 50:50 PCE : LS.
 - At 0.9% dosage
 - 75:25 PCE : Na-LS > 50:50 PCE : Na-LS
- Air content of all the mixes has not varied much due to lower dosages.
CONCLUSIONS

- Combinations of PCEs with LS will add a significant value to concrete sustainability.
- LS has good compatibility, with all the PCE molecules used in this study.
- PCE : LS combination are most desirable where SNF:LS combinations fail or require higher dosages.
- The synergy of PCE: LS combinations, have opened up an excellent option for Admixture formulators.
- Good workability retention and comparatively higher strengths achieved, suggest that significant cost and material savings may be obtained, using PCE : LS combinations.

PATH FORWARD

- Work in Progress
 - Study involving GGBFS and different cement brands.
 - To check other PCE molecules.
- Further Studies
 - Long term compatibility and compatibility with various cement types.
 - At higher dosages and higher W/B ratios.

ACKNOWLEDGEMENTS

- ACI INTERNATIONAL
- My Organization - CHEMBOND CHEMICALS LIMITED
- My colleagues across the organization at Chembond for supporting my study in various capacities
- Borregaard India Limited for providing samples and details on LS
- Ultratech cement for providing valuable support in testing cement samples

THANK YOU

Deepak Kandkar, DGM - Technology & Business Development
Chembond Chemicals Ltd. - India
ACI Spring Convention 2012 Dallas - USA