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Research collaboration between structural
design firms and the Univ. of Oklahoma

« High-rise Tube Building (Rosenwasser/Grossman)
s High-rise Dual Systems (Rosenwasser/Grossman)
+ High-rise SPSW Systems (Nabih Youssef Assoc.)

+ High-rise Core Wall-PT Flat Plate Bldg. (Ove Arup)

High-rise concrete tube building in NYC
designed by Rosenwasser/Grossman

» Tube systems

= N-S direction

> Flange moment frames
© Web shear walls

» Moment frames

& core walls
= E-W direction

» Use of belt walls

Designed by
Rosenwasser/Grossman
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High-rise concrete tube building in NYC
designed by Rosenwasser/Grossman

A

» Tube systems
= N-S direction
> Flange moment frames

i

> Web shear walls

s AR I,

» Moment frames

& core walls
= E-W direction

o i

N » Belt wall systems

High-rise concrete tube building

108 ft

58 ft Typ.,
Lower
floors

-
' 12 ft Typ., Lower floors

W ! . ;
- \El] ,”“H Shin, Kang and Pimentel (2010:

Tube action & shear lag behavior

» Shear lag behavior
- Positive shear lag

Kwan (1996)

Lateral Load

(a) with no shear lag (b) with shear lag - positive

Dynamic modal analysis

Shin, Kang, LaFave and Grossman (2010) 1

.

Shin, Kang and Pimentel (2010)

Shear lag behavior

ative she
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i Axial stress distribution
§ in flange frames or walls
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Positive shear lag

(No shear lag)
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Building Tube Systems 4 Compressive axial stress
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7/ f— Positive shear lag

/
/'f— (No shear lag)
v/ A+— Negative shear lag

in web frames or walls

Lateral load
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Wind tunnel tests (courtesy of RWDI)

Case study building located in the “building forest”
in Manhattan, NY




Wind tunnel tests (courtesy of RWDI)

An

Case study building | d in the “building forest”
in Manhattan, NY
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Analytical & Parametric studies

» 1. Analytical studies (five models)
= Original design (T1 — with tube action)
> No allowance of tube action (TINT)
- No belt walls — replaced by deep beams (T1NB)
> Move mid-height belt walls to the topmost (T1TB)
= Add top belt walls (T1DB)

» 2. Parametric studies (variation of member size)
= With respect to the original design (T1)

> Varying (i) spandrel beam depth, (ii) spandrel beam width,
(iii) column depth, and (iv) column width [of flange moment frames]
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Parametric studies (drifts)
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Comparisons of seismic and wind forces
or between prescriptive and test values
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Shin, Kang, LaFave and Grossman (2010) 14

Analytical studies (conclusions)

Tube action reduces about 30% of lateral drifts, particularly
effective for upper stories.

Tube action significantly increases overturning moment, but
slightly increases lateral stiffness.

Presence of belt-walls improves tube action & reduces positive
shear lag below the belt-wall (but increases positive shear lag
above the belt-wall — may be tolerable).

Use of extra top belt-walls does not much advance lateral
resistance.

The optimal location of a single belt-wall system is about
at mid-height of the bldg.

16

Shin, Kang and Pimentel (2010)

Parametric studies (col. axial force)
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Parametric studies (shear lag)
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Parametric studies (conclusions)

To reduce drifts, increase column depth & column width.

The impact of beam depth or width on drifts is minimal.

To increase overturning moment, increase column depth &
beam depth (above the belt wall) or column width (below the
belt wall).

Upper stories (80% taken by flange); lower stories (40%)

Tube action is modest for low-rise tubular structures.

To reduce shear lag in the flange frame, increase beam depth
column depth (in contrast, column width adversely affects).
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Research collaboration between structural
design firms and the Univ. of Oklahoma

s High-rise Tube Building (Rosenwasser/Grossman)
« High-rise Dual Systems (Rosenwasser/Grossman)
+ High-rise SPSW Systems (Nabih Youssef Assoc.)

» High-rise Core Wall-PT Flat Plate Bldg. (Ove Arup)

22

Research collaboration between structural
design firms and the Univ. of Oklahoma

+ High-rise Dual Systems (Rosenwasser/Grossman)
THE STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS

* Shin, Kang and Grossman (Nov. 2010)
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High-rise concrete dual systems in NYC
designed by Rosenwasser/Grossman

» Dual systems of RC walls and slab-column frames
» MWFRS (main wind-force-resisting systems)

Designed by
Rosenwasser/Grossman

« If not likely, design walls to resist 1.0E!

« Use dual systems: if slab-column frames take
more than 25% of design seismic forces (0.25E)

24
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Frame-wall Interaction

o=

Dual systems are superior
to single systems

E
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= Shear walls are much
stiffer at lower stories

L

e b 3 S
Loteral  Frome Flement Wil Element  Coupied Frame-Wail
toad  (Shear Model (Bending Mode)  Building

= Frames function well at
upper stories

Engineers are discouraged
not to use dual systems by
difficulties of design

Adapted from Paulay and Priestley (1991)

Stiffness modeling of members and walls

» Ultimate state (strength design)

Ve Ultimate
state

Beams 0.35El,

Columns 0.70El,

Uncracked | 0.70El; T—> Upper7/8~ 5/6 of total height

Walls
Cracked 0.35El, T—> Lower 1/8~ 1/6 of total height

Wall stiffness modeling for lower storieg=

RC walls tested by Thomsen and Wallace
(PERFORM-3D) modeled by Kang

sanidii bbb bl
oy

b TH2

Lateral drift ratio [%] Latoral drift rabio [%]

Linear lateral models
for design forces and moments
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wl | fF e d wl calibrations,
wl L o] Eowed .t
E o] ‘-,_\ [ €] -%n:- - o Core wall dual systems:
i '1 i‘ = \\ . efficient in lateral resist.
s - - - esp. for irregular shapes
B a s e =« o Adjust wall thickness (t)
Mol dagdarart Mkl Jailaaad Moekal dmitaarmart .
(as height up, t down)
» Stiffness modeling was
appropriate.

Shin, Kang & Grossman (2010)
29

Based on past design experience
and verification by checking wall stresses (Shin et al, 2010)
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Equivalent frame method

col.1
wuf Lundln ]
/

Rigid
slab-column
N joint
2-D equivalent

frame
modelin; Slab-beam
odeling with effective
slab width

Design wind loads

SUBSTRUCTURE 1

(183.2M, G6.91)

Tower 2190 4580 71500
Shin, Kang & Grossman (2010) Hotel 943 1280 21500

» 56 combinations of wind loads are investigated: 8 primarily for
designing the connection between the two substructures.
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Resultants Induced from
Design Wind Loads

L

Shear between rigid diaphragms

et

b

i
Shin, Kang &
Grossman (2010)
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» WIND27:  Fx1(-30%), Fy1(+100%), Mz1(-35%)
Fx2(-30%), Fy2(+30%), Mz2(-40%)

e T

Bid_t4s

F ? ; . — : Shin, Kang &
v oo® =] W om o m Grossman (2010) 3

Tension between rigid diaphragms Under construction

Shin, Kang &
Grossman (2010)

» WIND30:  FxA(+75%), Fy1(+45%), Mz1(-30%)
. Ex2(-75%), Fy2(+60%), Mz2(+30%)
33

Under construction Under construction

36
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Under construction

Research collaboration between structural
design firms and the Univ. of Oklahoma

« High-rise Tube Building (Rosenwasser/Grossman)
s High-rise Dual Systems (Rosenwasser/Grossman)
« High-rise SPSW Systems (Nabih Youssef Assoc.)

« High-rise Core Wall-PT Flat Plate Bldg. (Ove Arup)

Research collaboration between structural
design firms and the Univ. of Oklahoma

+ High-rise SPSW Systems (Nabih Youssef Assoc.)
THE STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS
* Kang, Martin, Park, Wilkerson and Youssef (Mar. 2011; On-line)
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Steel Plate Shear Wall (SPSW)

Horizontal
Boundary
Element (HBE)

1/4" to 3/8"
Vertical Plate
Boundary

Element (VBE)

a4
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High-rise steel plate wall systems in L.A.
designed by Nabih Youssef Associates

» L.A. Live
= High Seismicity
= Hotel + Residence

> First SPSW high-rise
building in LA

» SPSW
> Reduce 35% mass
= Reduce foundation
> Reduce construction time

Designed by
Nabih Youssef Associates

40

Completion stage of construction
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Research collaboration between structural
design firms and the Univ. of Oklahoma

High-rise steel plate wall systems in L.A.
designed by Nabih Youssef Associates

« High-rise Tube Building (Rosenwasser/Grossman)
s High-rise Dual Systems (Rosenwasser/Grossman)
s High-rise SPSW Systems (Nabih Youssef Assoc.)

» High-rise Core Wall-PT Flat Plate Bldg. (Ove Arup)

- M

Research collaboration between structural
design firms and the Univ. of Oklahoma

High-rise PT flat plate-wall systems in L.A.
preliminarily designed by Ove Arup

+ High-rise Core Wall-PT Flat Plate Bldg. (Ove Arup)
* Melek Darama Gogus and Kang (Sept. 2012)
45
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High-rise PT flat plate-wall systems in L.A.
preliminarily designed by Ove Arup

High-rise PT flat plate-wall systems in L.A.
preliminarily designed by Ove Arup

Fioor Slab (Effsctive Beam Coupling [Link) Beom
Wait Eoment with Posc
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Strain Gaugs
| . .. / Sz;mple axial strain reading

— under dynamic excitations
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Beam-Column Element with
P-M-M Hinges at Both Ends.

Wall Elements (Fibre Section with
Monlinear Concrete and Steel Materi
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