Emerging Technologies

ACI Fall 2012 Convention
October 21 – 24, Toronto, ON

Marc Jolin is a Full Professor in Laval University, Quebec city, Canada. His main research interest have evolved around shotcrete for the last 15 years. He is an active member of the ACI 506 Shotcreting committee and chairman of the ACI C660 Shotcrete Nozzlemen Certification program committee as well.

Shotcrete R&D

Marc JOLIN, Ph.D., eng.
Department of Civil Engineering
Laval University
Québec, Canada

Industrial Chair - History

• In the late 80’s, the MTQ was actively looking at shotcrete as a repair methods for its structures
 – It had a limited success, and realized some R&D was needed to solve a few issues (e.g. cracking, durability)
 – A few M.Sc. projects were undertaken
• In 1991, it became clear that shotcrete was there to stay, and a more organized research effort was envisioned: an Industrial Chair was put together

Industrial Chair - History

NSERC Industrial Chair on Shotcrete and Concrete Repairs (1994-2004)
NSERC Industrial Chair on Durable Repair and Optimized Maintenance of Concrete Infrastructures (2006-2011)

Shotcrete

• Early on, shotcrete raised many questions on:
 – Mix design performances (durability, mechanical properties and bonding)
 – Placement techniques (f(mix design)).
 – Jobsite and long term results
• Objective: develop knowledge to increase the confidence of the user and increase use in general of shotcrete
Mixture design

- Accelerators (dry and wet-mix)
- Air entraining admixtures
- Shrinkage reducing admixtures
- Internal curing agents
- Supplementary materials et replacements
 - Fly ash
 - Ternary binders

Set accelerators in dry-mix shotcrete

Recommendations

- In dry-mix shotcrete, the chemical family of a set accelerator is the main selection criterion
 - Aluminates based powders are the only one recommended for repairs exposed to aggressive environments
 - Carbonate based are especially efficient in the mining environment, where short term properties are very important

Set accelerators ...

Setting time (dry-mix)

Compressive str. (dry-mix)

Deicer salt scaling (dry-mix)
Air entraining admixtures

Objectives
- Confirm the positive effect of AEA on frost durability in dry-mix shotcrete
- Study the option of using AEA in the powder form
 - Better control in pre-bagged material

Deicer salt scaling (dry-mix)

![Graph showing material loss with and without AEA](image)

- Mix 1
- Mix 2
- Mix 3 (Plain)

Powdered AEA

Air entraining admixtures

Results & Observations
- Necessity of AEA in dry-mix shotcrete exposed to freezing environments is confirmed
- Powdered AEA are equivalent if not better:
 - Spacing factor usually below 200 µm
 - Dosage (by mass) << 1% of binder by mass

Placement methods

- High initial air content concept
- Shooting consistency
- Nozzlemen certification
- Reinforcement encapsulation
- Multi-layer application

High initial air content concept

Objectives
- Use air bubbles to improve workability of the fresh concrete (good pumpability) while generating a “slump killer” effect during compaction of the material by pushing out the air bubbles, thus creating a stiffer material (good shootability)
- Confirm the usability of the concept on a job site
High initial air content concept

Results & Observations
- The concept is applicable on regular job sites (and has been for 15 years in many areas)
- In-place air content is always sufficiently low to promote good compressive strength
- In-place spacing factor extremely good, typically < 200 µm
- Helps avoid set accelerators in “normal” placing conditions
Recommendation: Use it!

Rebar pull-out test

Average rebar pull-out strength

Nozzlemen certification
- Nozzlemen certification program created in 1997 for Quebec DOT
- Strong implication from the Industrial chair on the ACI shotcrete nozzlemen certification program
- ACI “Shotcrete Nozzlemen Certification” available since 2001
- Adopted by Quebec DOT in 2002

Recent years R&D
- Inform and capture your interest in shotcrete research!
 - Our lab…
 - …or the dustiest lab in North America
 - Pumping…
 - … why a pizza is a good comparison
 - Durability and service life…
 - … of course it’s as good as cast in-place!
 - Ultra High Early Strength
 - 10 MPa in minutes…
 - Placement…
 - … particles flying at 500 km, I swear!
Continuous Rebound Measurement

Service Life of Shotcrete

Background

• Shotcrete shows more voids than regular concrete
 – Absorption values and volume of permeable voids are higher than that generally found for similar concrete
 – however...

• Shotcrete is generally reported as having an excellent durability

Background

• Specification often calls for a maximum value of absorption for shotcrete (ASTM C642)
 – Which is the source of animated discussion both around the construction site and technical committee meetings!

<table>
<thead>
<tr>
<th>Sprayed Concrete Quality</th>
<th>Permeable Void Volume (%)</th>
<th>Boiled Absorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>< 14</td>
<td>< 6</td>
</tr>
<tr>
<td>Good</td>
<td>14 – 17</td>
<td>6 – 8</td>
</tr>
<tr>
<td>Fair</td>
<td>17 – 19</td>
<td>8 – 9</td>
</tr>
<tr>
<td>Marginal</td>
<td>> 19</td>
<td>> 9</td>
</tr>
</tbody>
</table>

[Morgan et al., 1987]
Challenge & Objective

- Predict long term durability of various types of shotcrete
 - Placement process changes the in-place composition and has an impact on the consolidation level
- Generate data on shotcrete transport properties
 - And compare them to regular cast-in-place concrete!

Transport

- Water permeability
 - Pressure
- Water diffusion
 - RH
- Ionic diffusion
 - Concentration
- Capillary absorption
 - Surface tension

Service Life Prediction

- Chloride concentration @ 25 mm depth
- Time (year)

Service Life Prediction

Discussion

- Mix design plays an important role
- The shotcrete placement method is creating a very unique and special type of concrete!

Placement of shotcrete

Contributors: Nicolas GINOUSE
Benoit BISSONNETTE
Background

• Study of particles transport

Shotcrete cinematic

Background

• A wide range of particle velocities are reported in literature
 - Stewart (1933)
 220-330 mph (Gunite)
 - Austin and Robins (1995)
 65-135 mph (dry-mix)
 25-65 mph (wet-mix)
 - Armelin high-speed filming (1997)
 11-60 mph

• No characterization of the entire flow of particle out of the nozzle
Objective & Methodology

- **Study Rebound** (through Armelin’s model 1997)

 ![Impact model](image)

 Particle tracking during the impact

 ⇒ Verify and enhance rebound model accuracy

Discussion

- **Perspective of this study**
 - Effect of equipment on material exit velocities, velocity profiles and energy profiles
 - Understanding and describing the flow of material
 - Effect of material flow characteristics on:
 - rebound
 - in-place compaction and composition
 - in-place mechanical properties
 - durability

Concluding remarks

- Research in shotcrete is strong!

- Many subjects are of interest:
 - pumping, placement, durability, etc.

- Look for it!

Special thanks...

- This type of research requires strong support from the industry

- **Contributors**
Thank you!

Marc JOLIN, prof.
Dep of Civil Eng.
Laval University
marc.jolin@gci.ulaval.ca

You may want to visit www.shotcrete.org!