Assessment of Concrete Deformation and Failure Behavior during a Standard Fire Test and a Controlled Heating Rate Test

Elin Jensen
Department of Civil and Architectural Engineering

ACI Spring Convention
Kansas City, MO
April 12, 2015
Normal and High Strength Concrete Column Behavior

Observations from Column Fire Testing

• The failure of the RC column is governed by the strength of the concrete
 • Concrete carries an increasing portion of the applied column load as the steel temperature increases resulting in yielding and decreasing strength.
 • The concrete strength also decreases with temperature

• The fire resistance decreases with increasing load intensity (loss of strength is higher in HSC than in NSC).
Motivation

• How comparable are concrete behaviors observed from simulated controlled heating rate fire tests to that of concrete behavior in standard fire tests?
<table>
<thead>
<tr>
<th>Concrete Mix</th>
<th>NSC</th>
<th>HSC</th>
<th>VHSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone Coarse Aggregate (kg/m³)</td>
<td>1032</td>
<td>785</td>
<td>787</td>
</tr>
<tr>
<td>Limestone Fine Aggregate (kg/m³)</td>
<td>795</td>
<td>880</td>
<td>859</td>
</tr>
<tr>
<td>Limestone Intermediate Aggregate (kg/m³)</td>
<td>-</td>
<td>349</td>
<td>288</td>
</tr>
<tr>
<td>Type 1 Cement (kg/m³)</td>
<td>203</td>
<td>259</td>
<td>262</td>
</tr>
<tr>
<td>Slag Cement (kg/m³)</td>
<td>110</td>
<td>146</td>
<td>141</td>
</tr>
<tr>
<td>Mid-Range Water Reducer (Super P) (L)</td>
<td>0.95</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Water (kg/m³)</td>
<td>133</td>
<td>114.5</td>
<td>105</td>
</tr>
<tr>
<td>Water/Cementitious Materials Ratio</td>
<td>0.43</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td>Compressive Strength (MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 days</td>
<td>51.5</td>
<td>63.4</td>
<td>90.0</td>
</tr>
<tr>
<td>At Time of Testing</td>
<td>52.5</td>
<td>77.5</td>
<td>107</td>
</tr>
</tbody>
</table>

Specimens around 80-87% internal RH prior to testing

VHSC: conditioning at 45°C

Specimens: 100 mm by 100 mm cross section area (length 450 & 900 mm)
Test Setup

Volume Stable Mullite Tubes

Load Beam

Unloaded beam with embedded Thermocouples

Base

Ram

Roof
Testing Procedure

- Specimen Preparation
 - Loaded Prism
 - Free Expansion Prism
- Specimen Loaded to the Predetermined Load
- Thermal Profile Started
- Sustained Load During the Cooling Phase

Specimen Failure at 740°C
Temperature Development in Standard Fire Test

Temperature Development Over Time for Core, Surface, and Quarter Measurements.
Temperature Development in Controlled Heating Rate Test

![Temperature Development Graph](image-url)
Total Deformation

- Total deformation of concrete is expressed as the sum of four strain components as follows:
 \[\varepsilon = \varepsilon_{th}(T) + \varepsilon_{t\sigma}(\sigma, T) + \varepsilon_{cr}(\sigma, T, t) + \varepsilon_{tr}(\sigma, T) \]

- Components of Total Strain
 - Thermal Strain (\(\varepsilon_{th}\))
 - Stress Related Strain (\(\varepsilon_{t\sigma}\))
 - Creep Strain (\(\varepsilon_{cr}\))
 - Transient Strain (\(\varepsilon_{tr}\))
Total Strain Curves – Controlled Heating Rate

- Specimen Failure

Temperature (°C)

% Total Strain

α = 0.167 (52.5 MPa)
α = 0.330 (52.5 MPa)
α = 0.500 (52.5 MPa)

α = 0.167 (77.5 MPa)
α = 0.330 (77.5 MPa)
α = 0.500 (77.5 MPa)
Total Strain Comparison
Standard Fire and Controlled Heating

* Specimen Failure
NSF = Non-Standard Fire
During and After Standard Fire Test

- Core temperatures less than 150°C
- Specimen Failure for initial load level $\alpha = 0.33$
- Specimen behavior similar at $\alpha = 0.167$ and $\alpha = 0.25$
- Longitudinal Crack develops during test (450 - 500°C)
- Spalling near 110 °C core temperature
Total Strain Comparison
Standard Fire and Controlled Heating

\[\alpha \approx 0.33 \]

controlled \(\checkmark \)

\[20\% \text{ Spalling} \]

* Specimen Failure
NSF = Non-Standard Fire

- ASTM, \(\alpha = 0.250 \)
- ASTM, \(\alpha = 0.167 \) (1)
- ASTM, \(\alpha = 0.167 \) (2)
- 600°C, \(\alpha = 0.167 \) (NSF)
- 800°C, \(\alpha = 0.167 \) (NSF)
Observations

• The deformation and failure behavior was similar for concrete prisms when load intensity and average core temperature was accounted for.

• Results indicated that deformations exceeding $\approx 1\%$, whether they occur during heating or cooling, are expected to cause an unstable ‘runaway’ failure.
Acknowledgements

• National Science Foundation Award #0747775

• Center for Innovative Materials Research (CIMR) at Lawrence Technological University

• Assistance During Experimental Research From:
 • Brittany Schuel, Mishi Joshi, Daniel Ziemba, Carl Durden
Thank you!