Use of Chemical Admixtures to Enable Successful Manufacture of Concrete with Low Portland Cement Content

Ara A. Jeknavorian, Ph.D., Jeknavorian Consulting Services
Chelmsford, MA 01824

Josephine Cheung, Ph.D., W.R. Grace, Cambridge, MA

Eric Koehler, Ph.D., Titan America, Miami, Fl

ACI Spring 2015 Convention Kansas City
Outline

- General Mix Design Strategy with HVFA
- The setting time and early strength challenge
- Chemical admixture options and approach
 - Flexing Polycarboxylate Technology
 - Mapping Set and Strength Accelerators
- Harnessing chemical admixture synergies to maximize early strength development

Acknowledgment
W.R. Grace R&D
General Mix Design Strategy for HVFA Concrete Mixtures

- Cementitious Content: 375-800 pcy (220-470) kg/m³
- Cement/SCM: 40-60%
- w/c: <0.40
- WR/MRWR/HRWR: Essential
- Set Accelerator: Req’d for set/early strength
- Air Entrainment: Freeze-thaw applications
Factors inhibiting increased cement replacement by SCMs

- Retarded set and strength development *
- Excessive retardation at cold temperatures *
- Inconsistent air entrainment *
- “Stickiness” *
- Prescription specified mix designs
- Spot shortages of quality materials

*Opportunity for Chemical Admixtures
SEM of 1-day Concrete with Cement and Fly Ash

- Fly Ash
- Cement
- Silica Fume
Impact of Fly Ash Replacement on Setting Time

BSA = 819 m²/kg, main particle size ~ 6 micron

Increasing SCM Content, increases initial and final set times

<table>
<thead>
<tr>
<th>Sample ash</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>SO₃</th>
<th>Cl⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>48.2</td>
<td>30.31</td>
<td>5.57</td>
<td>3.85</td>
<td>1.05</td>
<td>1.34</td>
<td>0.60</td>
<td>0.30</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Municipal Specifications Adjust Fly Ash Content as a Function of Temperature (Austin, TX)

<table>
<thead>
<tr>
<th></th>
<th>Hot Weather</th>
<th>Moderate Weather</th>
<th>Cold Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement, lbs/cy</td>
<td>300</td>
<td>325</td>
<td>400</td>
</tr>
<tr>
<td>Fly Ash, lbs/cy</td>
<td>150</td>
<td>125</td>
<td>100</td>
</tr>
<tr>
<td>% Replacement</td>
<td>33%</td>
<td>28%</td>
<td>20%</td>
</tr>
</tbody>
</table>

http://www.ci.austin.tx.us/greenbuilder/fs_flyashconcrete.htm
Ash collected from precipitator and air classified into 3 fractions.

Increased Fineness favors more spherical morphology

Increased lubricating effect and packing density

Chemical Admixture Strategy for Early Strength

- Water Reduction with Polycarboxylate Technology
- Mapping/Selection Set and Strength Accelerators
- Harness Synergistic Interactions
Influence of W/C on strength and permeability

Power’s Equation:

Porosity or solid/space ratio, x, exponentially related to strength, S, and permeability.

$$S = kx^3,$$ where $k = 34,000$ psi (235 mpa)

Superplasticizer Selection

◆ Chose superplasticizer chemistry with maximum dose/slump efficiency.

◆ In general, the lower the dosage of water reducing admixtures to achieve a particular degree of concrete workability (slump), the less the impact on the rate of cement hydration.

◆ Maximize:

 \[
 \text{Workability Increase or Water Reduction} \quad \delta \text{ Set} \\
 \text{Early Strength Increase} \quad \delta \text{ Workability or Water Reduction}
 \]

◆ Correlate dispersant selection with “stickiness”
Mortar Mixtures Dosed with Various Water Reducers
Comparison of dose/slump efficiency

PCE most dose/slump efficient
Slump Increase as a Function of Set Time

Comparison of various water reducer technologies

517 lb/yd³ (305 kg/m³) cement, w/c = 0.50

PC provides most favorable slump/Δ set

Set Times when dispersant dosed for 3 → 7” (180 mm) slump:

PC – 4.5 hrs NSFC - 5.5 hrs Lignin - 8 hrs Corn Syrup – 10.25 hrs
PCs can be designed for a Wide Range of Performance

PC can be designed for:

- high early strength
- quick slump gain
- long slump life without extended set
Paste Flow as a Function of Superplasticizer Structure and Dosage, 20°C

Nawa et. Al. Nice Conf. HRWR, 2000
Mix design: 708 lb/yd³, 40% Slag, w/cm = 0.45

Effect of Four PC on Set Time of Concrete with 40% Slag

Set time differences among PCs increases with both dosage and lower temperatures.
Rheological Measurements of PC-admixed Micromortar Mixtures. C=30g; Sand=54g; w/c = 0.5

- At same t_0, the micro mortar containing PC-1 has lower viscosity than the micromortar admixed with PC-2.
- Lower Viscosity is favored to help reduce “sticki-ness” factor with HVFA concrete.
Mapping Set and Strength Accelerators

Versus
Accelerators: Setting Time vs. Strength Gain

• Some accelerators may generally be more suitable for a particular performance.
• **Setting time** is primarily influences flatwork finishing and the timing for heat curing
• **Strength gain** is primarily impacts early form removal
Accelerators: Chloride vs Non-Chloride

- Calcium chloride is the most cost effective accelerator available but, adding chlorides to reinforced concrete can result in corrosion.
- In the presence of moisture and oxygen, chlorides initiate corrosion of reinforcing steel even in the high pH environment of concrete.
- Limits exist on the total permissible amounts of chloride in concrete.

Calcium Chloride is the “King of Accelerators”
Mapping Accelerator Technologies for Set and Strength

- Nano: 0.5 – 2%
- Calcium Chloride: 0.5 – 6%
- Sodium Thiocyanate: 0.02-0.05%
- Calcium Nitrite: 0.5 – 6%
- TEA: 0.02-0.05%
- TIPA: 0.02-0.05%
- Calcium Nitrate: 0.5 – 6%

Early Strength vs. Set
Isothermal calorimetry of C₃S dosed with 2% of various calcium salts

- Calcium Chloride most cost effective, most uniform response across wide range of cement chemistries

- Calcium nitrate is most common set accelerator platform. Normally, supplemented with other additives.
Relative Set/Strength Performance of Chloride, Nitrate, and Thiocyanate

- CaCl_2 effects both set and strength
- NaSCN primarily effects strength
- $\text{Ca(NO}_3\text{)}_2$ primarily effects set.
Chemical Admixture Synergies with Polycarboxylates

$1 + 1 > 2$!

Air and Strength
Concrete admixed with PC-HRWR and Calcium Nitrite
Prestressed Piles
Chowan River Bridge,
Edenton, NC
NSFC/Calcium Nitrite vs. Polycarboxylate/Calcium Nitrite

Plant Steam-Cured Concrete

390 kg/m3 (658 lb/yd3) Type II Cement, w/cm = 0.32

<table>
<thead>
<tr>
<th></th>
<th>NSFC+WR</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycarboxylate</td>
<td>ml/100kg</td>
<td>--</td>
</tr>
<tr>
<td>NSFC</td>
<td>ml/100kg</td>
<td>1300</td>
</tr>
<tr>
<td>WR</td>
<td>ml/100kg</td>
<td>130</td>
</tr>
<tr>
<td>Calcium Nitrite</td>
<td>l/m3</td>
<td>26.6</td>
</tr>
<tr>
<td>AEA</td>
<td>ml/100kg</td>
<td>78</td>
</tr>
<tr>
<td>Slump</td>
<td>mm</td>
<td>75</td>
</tr>
<tr>
<td>Air</td>
<td>%</td>
<td>5.4</td>
</tr>
<tr>
<td>Initial Set</td>
<td>Hr:Min</td>
<td>3:50</td>
</tr>
<tr>
<td>1-D Comp. Strength</td>
<td>MPa</td>
<td>32.4 (4700 psi)</td>
</tr>
</tbody>
</table>

Test Series I, Insulated Cure, Cement 051
Compressive Strength → 24hr

Strength (MPa)

5 10 15 20 25
Time (hrs)

Cement 051, Insulated Cure

- PCS .162%, ACC 2%
- NSFC .655%, ACC 2%
- PCS .151%, CANI 2%
- NSFC .658%, CANI 2%
Test Series I, Insulated Cure, Cement 051
Compressive Strength → 28-day (672 hr)
PC/Ca Nitrite vs. NSFC/Ca Nitrite @ 80°C

20-26% strength increase for PC/calcium nitrite vs. NSFC/calcium nitrite with comparable temp traces

Synergistic Strength Increase:
PC/Calcium Nitrite vs NSFC/Calcium Nitrite

Why?
- Hydration kinetics?
- Microstructure development?
- ITZ?
- Pore size distribution?
- Other?
Effect of Chemical Admixtures on the Microstructural Development of Portland Cement Mortars and Concretes

<table>
<thead>
<tr>
<th>Materials</th>
<th>Concrete</th>
<th>Mortar</th>
<th>Cement paste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>420 kg/m³</td>
<td>420 kg/m³</td>
<td>200 g</td>
</tr>
<tr>
<td>Natural Sand, FM 6.61</td>
<td>830 kg/m³</td>
<td>861 kg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Stone, ASTM C33, No.67</td>
<td>1040 kg/m³</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water</td>
<td>180 kg/m³</td>
<td>180 kg/m³</td>
<td>56 g</td>
</tr>
<tr>
<td>15 μm quartz</td>
<td>-</td>
<td>-</td>
<td>10 g</td>
</tr>
<tr>
<td>w/c</td>
<td>0.43</td>
<td>0.43</td>
<td>0.28</td>
</tr>
<tr>
<td>PCS dosage (% s/c)</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.13%</td>
</tr>
<tr>
<td>NSFC dosage (% s/c)</td>
<td>0.6%</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
<tr>
<td>CANI dosage (% s/c)</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

C. Porteneuve, A. Jeknavorian, F. Serafin, K.L Scrivener, E. Gallucci, G. Gal
American Ceramic Society Meeting, Baltimore, April 2005
PC/CANI vs NSFC/CANI – Concrete Performance

<table>
<thead>
<tr>
<th></th>
<th>PCS + CANI</th>
<th>NSFC + CANI</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-minute Slump (mm)</td>
<td>229</td>
<td>216</td>
</tr>
<tr>
<td>Air (%)</td>
<td>2.50%</td>
<td>2.20%</td>
</tr>
<tr>
<td>Initial setting time</td>
<td>3:47</td>
<td>4:15</td>
</tr>
<tr>
<td>(hh:mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PC/CANI gave shorter set and higher strength than NSFC/CANI

C. Porteneuve, A. Jeknavorian, F. Serafin, K.L Scrivener, E. Gallucci, G. Gal
American Ceramic Society Meeting, Baltimore, April 2005
Concrete Compressive Strength

PCS/CANI vs NSFC/CANI

Synergistic strength effect of PCS/CANI confirmed.
PC/CANI vs NSFC/CANI – Mortar & Paste Performance

PC/CANI consistently produced higher compressive strengths in both mortar and paste mixtures.

C. Porteneuve, A. Jeknavorian, F. Serafin, K.L Scrivener, E. Gallucci, G. Gal
American Ceramic Society Meeting, Baltimore, April 2005
Main exotherm occurs earlier with PC/CANI, but total heat comparable to NSFC/CANI.
Probing Concrete Microstructure with Backscattered Scanning Electron Microscopy (BSEM)

PC + Calcium Nitrite

NSFC + Calcium Nitrite

<table>
<thead>
<tr>
<th></th>
<th>PC + Ca(NO$_2$)$_2$</th>
<th>NSFC + Ca(NO$_2$)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap size, μm</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>C-S-H layer thickness</td>
<td>1.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Statistical Analysis of BSEM of 1-day old concrete

<table>
<thead>
<tr>
<th>PCS/ CANI</th>
<th>Grain (μm)</th>
<th>C-S-H (μm)</th>
<th>Gap (μm)</th>
<th>Grain (μm)</th>
<th>C-S-H (μm)</th>
<th>Gap (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>13.1</td>
<td>2.4</td>
<td>0.5</td>
<td>24.4</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.0</td>
<td>0.7</td>
<td>0.8</td>
<td>4.2</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NSFC/ CANI</th>
<th>Grain (μm)</th>
<th>C-S-H (μm)</th>
<th>Gap (μm)</th>
<th>Grain (μm)</th>
<th>C-S-H (μm)</th>
<th>Gap (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>12.4</td>
<td>1.2</td>
<td>0.8</td>
<td>27.8</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3.0</td>
<td>1.0</td>
<td>0.3</td>
<td>3.2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- For both grain sizes, the C-S-H layer is thicker with PCS/CANI.
- The NSFC/CANI sample exhibits a more significant gap between the anhydrous cement grain and the inner C-S-H.
Effect of PCE/Calcium Nitrite for 60/40 OPC/Ash Concrete

420 kg/m³ total cementitious

<table>
<thead>
<tr>
<th>Mix</th>
<th>Fly Ash (Class F)</th>
<th>Water</th>
<th>Admixture</th>
<th>Slump</th>
<th>Air</th>
<th>Initial Set</th>
<th>Final Set</th>
<th>Comp. Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% replace</td>
<td>w/c</td>
<td>%solids/cm</td>
<td>mm</td>
<td>%</td>
<td>(hr:min)</td>
<td>(hr:min)</td>
<td>1-Day</td>
</tr>
<tr>
<td>Baseline</td>
<td>0</td>
<td>0.50</td>
<td></td>
<td>140</td>
<td>1.5</td>
<td>4:22</td>
<td>6:33</td>
<td>7.0</td>
</tr>
<tr>
<td>+ fly ash</td>
<td>40</td>
<td>0.50</td>
<td></td>
<td>215</td>
<td>0.9</td>
<td>9:20</td>
<td>13:01</td>
<td>3.1</td>
</tr>
<tr>
<td>+6% water cut</td>
<td>40</td>
<td>0.46</td>
<td></td>
<td>145</td>
<td>0.9</td>
<td>8:27</td>
<td>11:59</td>
<td>3.4</td>
</tr>
<tr>
<td>+18% water cut</td>
<td>40</td>
<td>0.38</td>
<td>0.13% PC-500</td>
<td>145</td>
<td>3.2</td>
<td>7:48</td>
<td>10:59</td>
<td>5.5</td>
</tr>
<tr>
<td>+CANI</td>
<td>40</td>
<td>0.38</td>
<td>0.13% PC-500 2.0% Ca Nitrite</td>
<td>165</td>
<td>3.6</td>
<td>5:20</td>
<td>8:15</td>
<td>6.0</td>
</tr>
</tbody>
</table>

- **24% water reduction with fly ash**
- **1 hr retardation from baseline**
- **1D strength = 86% of baseline**
- **7D strength > baseline**
Performance Map of HRWR/HES System

Reference = 20% fly ash w/ HRWR. Test Mix = 50% fly ash w/ HRWR + HES
Strength target = 80% 1-day Ref.; Set target = < 60 min Initial set

Cement Alkalinity
Low High

<table>
<thead>
<tr>
<th>Low</th>
<th>“F” Fly Ash Content</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5%</td>
<td>3.7%</td>
<td>4.8%</td>
</tr>
<tr>
<td>45 mins</td>
<td>105 mins</td>
<td>110 mins</td>
</tr>
<tr>
<td>63%</td>
<td>71%</td>
<td>62%</td>
</tr>
<tr>
<td>30 mins</td>
<td>100 mins</td>
<td>100 mins</td>
</tr>
<tr>
<td>63%</td>
<td>71%</td>
<td>62%</td>
</tr>
<tr>
<td>30 mins</td>
<td>100 mins</td>
<td>100 mins</td>
</tr>
</tbody>
</table>

Strength target performance met w/ low alkali cement + high CaO ashes
Set performance difficult to predict, fly ash-dependent.
Effect of Cement Alkali Content on Set Acceleration by Calcium Nitrate

Increasing alkali content means increased soluble sulfate and hydroxide, both of which precipitate calcium ions.

www.baustoffchemie.de/en/db/set-accelerators
In Summary……

- Proper selection of admixture systems (HRWRs and accelerators) can enable use of high volume cement replacement by SCMs.
- Polycarboxylate technology can be optimized for many diverse applications such as HVFA concrete mixes.
- Practical, cost-effective technologies for early activation of SCMs still needed.
- One cannot assume admixture systems will automatically work as usual when using high levels of SCMs.
- And just when you think, there is no hope to make that HVFA work for your application, remember…………
Thank you for your attention. All questions most welcome.