Means and Methods of Evaluating Reinforced Concrete Structures

ACI Fall 2012 Convention
October 21 – 24, Toronto, ON

Stephen Foster joined WJE in 2010 and since that time has investigated, evaluated, and provided rehabilitation services on numerous structural and architectural projects. His project work experience includes concrete, steel, masonry, and wood structures. Mr. Foster also prepares construction documents for various repair projects. His professional affiliations include the American Concrete Institute, International Concrete Repair Institute, National Association of Corrosion Engineers, and Structural Engineers of Texas.

BACKGROUND INFORMATION

Task:
• Comprehensive condition assessment

Goals:
• 30 years of additional service life
• Develop scope for repair documents

Structure:
• In service since 1986
• 128 ft [39 m] diameter
• 5,000 psi [34.4 MPa]
• 10 years of noted distress
• Moderate amount of chlorides in H₂O

OUTLINE OF PRESENTATION

• Background
• Assessment Strategies
• Results
• Service Life Modeling
• Repair Approach
• Conclusions
• Questions

CONDITION ASSESSMENT AND CONCRETE REPAIR STRATEGIES AT WATER TREATMENT STRUCTURES

STEPHEN FOSTER
WISS, JANNEY, ELSTNER ASSOCIATES, INC.
TYPICAL BEAMS

- 220 beams
- 1 ft x 8 in (305 mm x 203 mm)
- “Ears” support filter media

TYPICAL GIRDER

- 106 girders
- 18 in square (457 mm)
- 16 ft long (4.9 m)

TYPICAL PIER

- 208 piers
- 14 in diameter (356 mm)
- 3 to 3 1/2 ft tall (0.9 to 1.1 m)

PREVIOUS REPAIRS ON TF2

- Cracked beam “ears”
- Cracking of slab
- Missing hairpin reinforcement at beams
- Beam end spalls
- Sealant joint at wall

- Cracked beam “ears”
- Cracking of slab
- Missing hairpin reinforcement at beams
- Beam end spalls
- Sealant joint at wall
Previous Repairs on TF2
- Cracked beam "ears"
- Cracking of slab
- Missing hairpin reinforcement at beams
- Beam end spalls
- Sealant joint at wall

Goals of Assessment
- Develop wholesale understanding of the structure
- Focus maintenance strategies at critical locations
- Precision in repair documents
- Repair now or later?

Assessment Strategies
- Tools for concrete assessment
 - Field Investigation
 - Laboratory Evaluation

Goals of Assessment
- Repair now or later?

Assessment Strategies
- Field Investigation
 - Visual Survey/Acoustic Sounding
 - Cover Survey
 - Half-Cell Potential
 - Corrosion Rate
 - Carbonation Testing
 - GPR
VISUAL/ACOUSTIC/COVER SURVEY

- Identify concrete delaminations
- Document cracking patterns
- Non-destructive cover survey — verified by core and half cell locations
- Locate Half-Cell, Corrosion Rate, & Core locations based on visual results

HALF-CELL POTENTIAL

- Indication of corrosion risk for reinforcement
- Factors: moisture, continuity, carbonation, delaminations, adjacent soil

ASTM C876:

- Corrosion Potentials of Uncoated Reinforcing Steel in Concrete
- >200mV = 90% probability of no corrosion
- <350mV = 90% probability of corrosion

HALF-CELL POTENTIAL

- Saturated concrete = more negative potentials (less resistance)
- Look for “hot” spots

HALF-CELL POTENTIAL

- General potential gradient = more negative at bottom of Trickling Filter
- Look for “hot” spots

HALF-CELL POTENTIAL

- Uniform HCP gradient = corrosion not likely
HALF-CELL POTENTIAL

Interpreting Results:
- "Hot" spot = possible area of corrosion

Interpreting Results - Positive Values:
- Is concrete dry?
- Electrical interference
- Reversed leads
- Poor contact to reinforcement

Interpreting Results - Carbonated concrete (more positive)
- Carbonated Concrete
- p_{O2} is high
- Fe conc. is high
- Micro cells occur
- Mixed potentials

Interpreting Results - Delaminations (more positive)

Interpreting Results - Concrete adjacent to soil (depends)
CORROSION RATE TESTING

- Measures instantaneous snapshot of corrosion rate by measuring polarization resistance (Stern-Geary Equation)
- Temperature and moisture will influence readings
- Beams: 0.05 μA/cm²
- Girders = Wall = 0.35 μA/cm²

> Gecor™
> 0.2 μA/cm² = passive
> >0.1 to <0.5 μA/cm² = low
> >0.5 to <1 μA/cm² = moderate
> >1 μA/cm² = very high corrosion

- Feby et al. 1996
- Andrade and Alonso 1996

CARBONATION TESTING

- Carbonation progresses ~0.04 in [1 mm]/year in typical concrete
- Moisture + oxygen + low pH = corrosion

MEASURED CARBONATION DEPTHS, IN. [MM]

<table>
<thead>
<tr>
<th>Element</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beams</td>
<td>0.25 [6.4]</td>
<td>0.25 [6.4]</td>
<td>0.25 [6.4]</td>
</tr>
<tr>
<td>Girders</td>
<td>0.25 [6.4]</td>
<td>0.75 [19.1]</td>
<td>0.53 [13.6]</td>
</tr>
<tr>
<td>Piers</td>
<td>0.38 [9.5]</td>
<td>1.00 [25.4]</td>
<td>0.57 [14.5]</td>
</tr>
</tbody>
</table>

GROUND PENETRATING RADAR

- Non-destructive technique to verify presence of steel hairpins at the ends of beams

ASSESSMENT STRATEGIES

- Laboratory Evaluations
 - Petrography
 - Compressive Strength
 - Rapid Chloride Permeability (RCP)
 - Sulfate Content
 - Soil Testing
 - Chloride Content

PETROGRAPHY & COMPRESSIVE STRENGTH

- Assess the general composition of concrete and identify any distress mechanism
- 0.4 to 0.5 w/c ratio
- No ASR/DEF
- Avg. strength = 6,740 psi [46.5 MPa]
RAPID CHLORIDE PERMEABILITY

- Measures resistance of concrete to chloride penetration
- Results:
 - 480 to 1015 coulombs
 - Avg = 800 coulombs = very low permeability

ASTM C1202
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration

SULFATE CONTENT & SOIL TESTING

- Concrete: 1.4% (by mass) sulfate at depth of 0 to 1 in. [25 mm] = 1.5 x background content
- Soil: 0.1% (by mass) = “moderate sulfate exposure” per ACI 318

ASTM C265
Standard Test Method for Water-Extractable Sulfate in Hydrated Hydraulic Cement Mortar

ASTM C1152
Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete

CHLORIDE CONTENT ANALYSIS

- Chloride content vs. depth – level of reinforcement
- Chloride corrosion threshold:
 - 0.2% by weight of cement
 - 350 ppm by weight of concrete
 - ~1 lb/cu yd of concrete
- Some chlorides bound in concrete (not available to promote corrosion)

ASTM C1352
Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete

RESULTS OF ASSESSMENT

- Beams
- Girders
- Piers
- Perimeter Wall
- Slab
Beam Results
- Cracking along the beam “ears” that support the filter media
- Transverse cracking on top of beams across girder support
- Cores taken at HCP “hot spots” – no significant corrosion

Girder Results
- Transverse cracking at ~20% of top portion of girder between beams

Pier Results
- Cracking and corrosion at transverse reinf. – many repaired with epoxy previously
- Limited oxygen & saturated concrete = “black” rust, less expansive than “red” rust

Perimeter Wall Results
- Deteriorated sealant joint at slab
- Isolated delaminations at interior
- Distress / delams along top of wall
- Paste erosion / scaling along soil line

Slab Results
- No systemic visual/acoustic distress
- Isolated discrete surface delaminations (~1-2 sq. ft.)
- Cores taken at delaminations; no corrosion observed
SERVICE LIFE MODEL

Goal:
30 years of additional service life

Fix it now or later?

How much damage if we wait? And when?

Estimate rate of deterioration
Predicts percentage to exhibit damage over time

Calibrate propagation time based on results of assessment = 22 years

Model based on:
- Exposure conditions
- Concrete quality
- Cover depth
- Cracking

More data = More reliable model

Beams & Girders: 25 to 30 years until 10% threshold

Results for Piers

REPAIR STRATEGIES

- **Goal:** 30 years of additional service life
- **Repair all observed damage**
- **Focus long-term maintenance strategies at critical areas**
 - Piers
 - Shortest remaining service life
 - Top of Wall
 - High chlorides
 - 50% delamination

Repair areas with observed damage:
- Beam "ears"
- Salt hydration distress
- Low viscosity epoxy at Beam "Ears"
- Partial depth repair at soil line

Repair top of girders; Coat with membrane

Repair beams and girders at standpipe
REPAIR STRATEGIES

Focus Long-Term Maintenance at critical areas:
- Pier jackets
- Coating system

Alternate:
- Stay-in-place for with sacrificial cathodic protection system

RECOMMENDATIONS FOR WALL

Focus Long-Term Maintenance at critical areas:
- Top of wall

CONCLUSIONS

- Advantages of comprehensive condition assessment
 - Develop wholesale understanding of the structure
 - Focus maintenance strategies at critical locations
 - Creates precision in repair documents
 - Final repair quantities ±10% from Construction Documents

QUESTIONS?