

 Lower 	Level Overload: "smart' Building	' fuses not activated in E	Building II
			Numbers show MCDD values
	Building I	Building II	
More dam	age DI = 0.3	• Less damage DI = 0.	.07
> higher le	vel of damage at smaller	> lower damage spread	around the

Objective and Research Approach

- Enable the sensing capability: traffic flow detection, pavement structural health monitoring.
- Sections of a given roadway are paved with piezoresistive carbon-nanotube (CNT)/cement composites.
- CNTs can also enhance the mechanical strength
- Advantages:

Long service life and low maintenance cost

Konstantin Sobolev, is an Associate Professor in the Department of Civil Engineering and Mechanics, College of Engineering & Applied Science at the University of Wisconsin-Milwaukee, and a Professor of Civil Engineering at the Universidad Autonoma de Nuevo Leon, Mexico. He is Chair of ACI Subcommittee 236D, Nanotechnology of Concrete and a member of ACI Committees 236, Material Science of Concrete; 363, High-Strength Concrete; 544, Fiber Reinforced Concrete; 523, Cellular Concrete; 38, Workability of Fresh Concrete. He is a member of the Mexican Academy of Sciences and Task Force on Nanotechnology-Based Concrete Materials at Transportation Research Board of National Academies. His research interests include advanced construction materials, high-strength concrete, application of chemical admixtures and nanomaterials in concrete.

ACI WEB SESSIONS

4

milled carbon fibers (5-10 microns) but significantly larger than carbon nanotubes (1-10 nm).

*DISPERSION OF	ž
CARBON FIBERS	
* The surfactant and water were premixed	
* The carbon fibers were mixed with water and surfactant	
*The carbon fibers were added and dispersed using ultrasound for 20 minutes	
*The effect of ultrasonification observed at 5, 10, 15 and 20 minutes using	
optical microscope.	

	*SPSSM CO	MPO	SITI	ONS	Rendrate Concert Rector
	Composition	Ref	0CF	1CF	2CF
	PVA fibers, % vol	3	3	3	3
	Carbon nanofibers, %vol	0	0.1	0.2	0.4
	Carbon nanofibers, % weight	0	0.5	1	2
	S/C	0.5	0.5	0.5	0.5
	W/C	0.3	0.3	0.3	0.3
	SP, % w. cement	0.125	0.125	0.125	0.125
F					
A V	VEB SESSIONS				

	*P	ROP PV/	ERTIE A FIBE	ES OF ERS	A second se
PVA Fiber	Density (dtex)	Length (mm)	Tenacity (cN/dtex)	Elongation (%)	Modulus (cN/dtex)
RECS 7x6mm	7	6	12	7	300
 Note: 1 dtex= ACI WEB SESSIO	1 x 10 ⁻⁷ kg.	/m =0.9 denie	er		

*0	OISTUR	CONT	NT
	Ν	Noisture Content,	, %
Specimens	Dry	24hW	24hC
Ref	0.00	2.44	2.56
2CF	0.00	1.26	1.28

*CONCLUSIONS *The composition of fiber-reinforced cement composites can be fine-tuned so resulting material possesses piezoresistive stress-sensing properties.

aci

- *Smart piezoresistive stress-sensing materials (SPSSM) can be developed by combining ECC and carbon nanofibers.
- *The piezoresistance response of SPSSMs depends on moisture and chloride content and potentially can be used for moisture and chloride detection.

ACI WEB SESSIONS

