

Development of ACI 327R-14, Guide to Roller-Compacted Concrete Pavements

Norb Delatte, P.E., Ph.D., F.ACI, Cleveland State University

Index	
Introduction Notation and Definitions Key Elements Common Uses Properties and Materials Mixture Proportioning Structural Design Production Construction Inspection and Testing Defense	Guide to Roller- Compacted Concrete Pavements Report by AD Control of AD
Appendix – Mixture Proportioning based on Soil	JCI

Based on CP Tech Center/PCA Guide

Previous ACI Document ACI 325.10R State-ofthe-Art Report on Roller-Compacted Concrete Pavements

National Concrete Rowman Betweetige Carrier

Definition

"Roller-Compacted Concrete (RCC) is a no-slump concrete that is compacted by vibratory rollers."

- Zero slump (consistency of damp gravel)
- No forms
- No reinforcing steel
- No finishing
- Consolidated with vibratory rollers

Concrete pavement placed in a different way!

Roller-Compacted Concrete

Engineering Properties

- Equal or superior to conventional concrete
 Compressive strength

 4,000 to 10,000 psi

 Flexural strength

 500 to 1,000 psi
 f_r = C(f'c)^{1/2}

 Modulus of Elasticity

 3,000,000 to 5,500,000 psi
 - $E = C_E(f'c)^{1/2}$

General Materials and Practices	Type of Pavement								
	Conventional Concrete Pavements	RCC Pavements							
Mix materials proportions	 Aggregates typically account for 60 to 75 percent of the mixture by volume. (w/cm) ratio is 0.40 to 0.45 	 Aggregates compose 75 to 85 percent of RCC mixtures by volume. (w/cm) ratio of 0.34 to 0.40 is typically lower than that on conventional concrete mixtures 							
Workability	 Manipulated by the paving machine, (slump is generally about 2 in.) 	 The mixture has the consistency of damp aggregates. RCC's relatively dry and stiff (zen slump) Mixture is not fluid enough to be manipulated by traditional concrete paying machines. 							
Paving	 The mixture is placed ahead of a slipform paving machine, which then spreads, levels, consolidates through vibration. 	 Typically the RCC mixture is placed with a conventional or heavy-duty, self-propelled asphalt paving machine To initially consolidate the mixture to a slab of uniform thickness. 							

Benefits of RCCP

- Fast construction with minimum labor
- High load carrying ability
- Early strength gain
- Durable
- Low maintenance
- Light surface reduces lighting requirements
 Economical

Common Uses

- Ports, Intermodal facilities, and heavy industrial areas
- Light industrial areas
- Airport service areas
- Arterial streets
- Local streets
- Widening and shoulders
- Multilayer pavement systems for high speed uses
- Logging facilities, composting areas, and storage yards

Honda Plant – Alabama

RCC Materials Aggregates • Coarse – usual top size 5/8 to ¾ inch for surface finish • Fine

- Combined gradation
- Cementitious materials
- Cement
- Fly ash
- GGBFS
- Silica fume common in Quebec
- Water
- Limited use of chemical admixtures

Mixture Proportioning Methods

- Soil compaction method (most common for pavements)
- Concrete consistency method
- Solid suspension model
- Optimal paste volume method
- Last 3 methods most common for hydraulic structures, e.g. dams

Soil Compaction Method

- Choose well-graded aggregates
- Select a mid-range cementitious content
- Develop moisture density relationship plots
- Cast samples to measure compressive strength
- Test specimens and select required cementitious content
- Calculate mixture proportions

Molding RCC Cylinders with Vibrating Hammer

Fig. 6.3.1.4—Molding RCC cylinders with vibrating hammer (Harrington et al. 2010).

Mixture Proportioning Example

Parking lot facility

- Specified compressive strength 4,000 psi at 28 days
- Need 1,000 psi over required (e.g. 5,000 psi)
- Local aggregates with 3/4 inch NMSA BSG 2.70, absorption 2 %
- Fine aggregate BSG = 2.55, absorption 1 %
- Type I cement

Combined Aggregate Gradation

- Use sieve analysis of each aggregate
- Develop blend as close to 0.45 power line as possible
- In this case CA = 55 %, FA = 45 %
- Try cement content of 12 %

Test Specimens

- Test specimens at 10 %, 12 %, and 14 % cement at OMC (6.5 % water)
- Plot and find cement content at 5,000 psi
- Use 12.7 % cement

Strength versus Cementitious Content

Design Procedures

Portland Cement Association (PCA) - (Single

U.S. Army Corps of Engineers (USACE) (Single Vehicles)

Conventional design procedures for parking lots, streets, and roads (Mixed Traffic)

Vehicles)

Industrial Pavements
 RCC-PAVE computer program

ACI 330 tables

ACI 325.12R tables

StreetPave software

Slab tensile stress Structural Design 0 Plain, unreinforced Undoweled Design is otherwise the same \bigcirc as for conventional concrete pavements Thickness range for 1 lift 4 to 10 inches Slab tensile stress is critical. Stress is affected by Pavement thickness is a function of Load Tire pressure and spa Expected loads Slab thickness Concrete strength Subbase support

Concrete stiffness

Soil characteristics

SR = Stress _ Ratio = $\frac{Critical _ Applied _ Flexural _ Stress}{Flexural _ Strength}$

Where:

Critical Applied Flexural Stress is the maximum tensile stress at the bottom of the concrete pavement slab, and

Flexural Strength (or modulus of rupture) is the breaking stress of a beam tested by third-point loading (ASTM C 78, AASHTO T97, CSA A23.2-8C)

Design Example 1 – Single Wheel

- Load applications 30 per day, 219,000 over 20 years
- Vehicle maximum weight of 120,000 lb., tire 100 psi with 300 in² contact area
- RCC flexural strength 650 psi
- Subgrade *k*-value = 100 pci

Design Calculations

- Design stress ratio = 0.433 (interpolated from chart)
- Allowable stress σ = MOR x SR = 650 x 0.433 = 281 psi
- Maximum single wheel load P = 120,000/4
 = 30,000 lb
- Allowable stress per 1,000 lb. load = $\sigma/(P/1,000) = 281/30 = 9.37$ psi/kip
- Use chart design thickness 11 ¹/₂ inches

Example 2 – Dual Wheel

Fig. 7.4.2a—Dual-wheel straddle carrier and loading dock (photos courtesy of Wayne Adaska).

Example 2 – Dual Wheel

- Vehicle 2 steer wheels, 4 drive wheels, 60,000 lb. on each dual set
- Dual spacing s=20 inches, tire inflation pressure 120 psi
- Concrete flexural strength 700 psi, subgrade k-value 200 pci
- 40 channelized load applications per day, 20 year design life, total 292,000 applications

Design Calculations

- Tire contact area = $60,000/(2 \times 120) = a$ = 250 in² per tire
- Design stress ratio = 0.43 (same chart as before) gives 280,000 applications
- Allowable stress σ = MOR x SR = 700 x 0.43 = 301 psi
- Use trials for different pavement
- thicknesses, try 15 inches
- Need radius of relative stiffness {, get 49 inches from table

Design Calculations

- Use ℓ , a, and s to get F = 1,000
- Find σ = (Dual-wheel load/1,000) x 1/(slab thickness)² x F
 - $\sigma = 60 \times (1/15^2) \times 1,000 = 266 \text{ psi}$
- Since 266 < 301 psi, reduce slab thickness and iterate

USACE Design Procedure

- Similar that for conventional pavements
- Vehicle loading converted to ESALs
- Then, converted to a pavement design index
- USACE procedure assumes 0 % load transfer
- For multi-lift pavements, can consider three bond conditions – full bond, partial bond, no bond

USACE Design Example

- Tank hardstand 80,000 lb. tracked vehicles, 30 per day
- Subgrade *k*-value 100 pci
- RCC flexural strength 600 psi
- Parking lot classified as a Class E facility
- Cross-index Traffic Category VI (up to 90,000 lb. tracked vehicles), 40 vehicles per day, and Class E to find pavement design index = 7
- Design thickness = 8.5 inches should be satisfactory

ACI Parking Lot Procedure

Tables from ACI 330R-08, *Design and Construction of Concrete Parking Lots* Example parking lot

- Car parking Category A
- Average daily truck traffic (ADTT) = 10

K = 100 pci

- Concrete MOR 600 psi
- Gives RCC thickness of 5 inches

			Twenty	y-year desi	ign thickn	ess recom	unendatio	us, in. (no d	fowets)					
		k = 500 psi/in. (CBR = 50, R = 86)				k = 406 psi (CBR = 38, F			psi/in. L R = 80)			k = 300 psi/in. (CBR = 26, R = 67)		
	MOR, psi:		600	550	500	650	600	550	500	650	600	550	500	
	A (ADTT = 1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5	
affic category *	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5	
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5	
	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	
	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5	
÷	C (ADTT ~ 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5	
- 1	D (ADTT - 700)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	
		k = 200 psi/in. (CBR = 10, R = 48)			k = 100 psi/la. (CBR = 3, R = 15)			k = 50 psi/in. (CBR = 2, R = 5)						
	MOR, psl:	650	600	550	500	650	600	550	500	650	600	550	500	
-	A (ADTT = 1)	4.0	4.0	4.0	4.5	4.0	4.5	4.5	5.0	4.5	5.0	5.0	5.5	
	A (ADTT = 10)	4.5	4.5	5.0	5.0	4.5	5.0	5.0	5.5	5.0	5.5	5.5	6.0	
ŝ	B (ADTT = 25)	5.0	5.0	5.5	6.0	5.5	5.5	6.0	6.0	6.D	6.0	6.5	7.0	
Top .	B (ADTT = 300)	5.5	5.5	6.0	6.5	6.0	6.0	6.5	7.0	6.5	7.0	7.0	7,5	
- 2	C (ADTT = 100)	5.5	6.0	6.0	6.5	6.0	6.5	6.5	7.0	6.5	7.0	7.5	7.5	
Urall.	C (ADTT = 300)	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.5	7.0	7.5	7.5	8.0	
	C (ADTT = 700)	6.0	6.5	6.5	7.0	6.5	7.0	7.0	7.5	7.0	7.5	8.0	8.5	
	D (ADTT = 700)	7.0	7.0	7.0.	7.0	8.0	8.0	8.0	8.0	.9.0	9.0	9.0	9.0	
A.k-	1 – average datay week wards modulus of subgrade reaction 1 in. – 25.4 mm, 1 psi – 0.00	690 MPs.	and 1 pairs	ening Ratio, 1 = 0.27 MPr	R = pesista R = pesista sim	1 (1995), 2923 104 Yolyan, 3	dOR - mol	tuces, peepp	R.	COLUMN TO BE	-witeto vetta	les. Kaner to	Alberra	
					In	flic esteg	ories							
1. Ca	r packing areas and access	InnesC	Setepory A											
2.55	opping center entrance an	t service	lates-Ca	legory B										
3. Ju Pi Ei	s perking eross, city and s eking area and interior has trunce and exterior lanes-	choal hu us-Cate Categor	gory B y C											
4. Tr	ick parking areas-Catego	ry B. C.	or D											
			Truck type	<i>.</i>			Parking area and lanes			interior Entrance and exts		e and exter	ior lanes	
Singl	e units (bobtailed trucks)					Category B			Cat		Category I	eny C		
Mahi	ple units (tractor trailer un	der units with one or more trailers)						Category C			Category D			
			5	iubgrade s	oil types a	ad appro	ximate 10	pport value	**					
			Type of so	48					Support		_	A, psölis.		
Fine-	grained soils in which silt	and city-	size partic	fes new pred	Arminate				Low			75 to 120		
Send	ands and sand-gravel mixtures with moderate amounts of silt and clay						Medium			130 to 170				
			6						A			100.00		

ACI Streets and Local Roads Procedure

- ACI 325.12R *Guide for Design of Jointed Concrete Pavements for Streets and Local Roads*
- Design example
 - Collector street without curb and gutter, 50 ADTT
 - k = 100 pci
 - MOR = 650 psi
- Gives RCC thickness of 7 inches
- ACPA StreetPave program can also be used for parking lots, streets, or roads

Basic Construction Sequence

- Produced in a pugmill or central mix plant or dry batch plant
- Transported by dump trucks
- Placed with an asphalt paver
- Compacted by vibratory and pneumatictired rollers
- Cured with water or curing compound

Fig 8.2.1.2—Transit mixer dumping into trucks (Harrington et al. 2010).

Preparation for Placement

- Simple preparation: no dowels, reinforcing, or forms
- RCC ideal for wide-open, unimpeded placement
- Block off fixtures (stormwater inlets, etc)
- Ensure subbase is smooth and at specified grades
- Set up stringlines
- Moisten subbase prior to RCC placement

Fig. 9.1-Subgrade preparation (Harrington et al. 2010).

Fig. 9.2-RCC uniformly loaded into dump truck.

Placing

Layer thickness

- 4 in. minimum
- 8 in. maximum (10 in. with heavy-duty pavers)

Timing sequence

- Adjacent lanes placed within 60 minutes for "fresh joint", unless retarders used
- Multiple lifts placed within 60 minutes for bond
- Production should match paver capacity
- Continuous forward motion for best smoothness

Placing Equipment

Conventional Asphalt Pavers

- Provides some initial density (85%-92%)
- Relatively smooth surface
- Increased cleaning and maintenance

Placing Equipment

Aggregate spreaders

- Jersey spreader Motor grader/dozer
- Little initial compaction
- Low surface smoothness
 Poor surface texture
- Additional surface (or diamond grinding) required for smooth ride

Fig. 9.4—Close-up view of high-density paver (Harrington et al. 2010).

Fig. 9.5—Side-by-side view of steel drum and rubber-tired rollers (Harrington et al. 2010).

Jointing

- Construction joints
- Sawed (contraction) joints
- Isolation joints
- Expansion joints
- Load transfer across joints, if any, is through aggregate interlock

Construction Joints

Most critical area of project Must be constructed properly for durability Ensures bond/interlock, so slab acts monolithically Three types of construction joints: • "Fresh joints" • "Cold joints" • "Horizontal joints"

Curing

EXTREMELY IMPORTANT

Ensures surface durability; reduces dusting Low moisture content in RCC; no bleed water Three methods:

- Moist cure
- Concrete curing compound
- Asphalt emulsion

Future Developments

- Three to four year revision cycle
 - Incorporate information from ACI 325.10R-95
 - Incorporate information from ACI 309.5R Compaction of Roller-Compacted Concrete
 - Other improvements?
 - Possible development of a specification

