Innovations in Chemical Admixture Technology as Related to Sustainability, Part 2

ACI Spring 2012 Convention
March 18 – 21, Dallas, TX

Joseph A. Daczko is a Product Manager with the admixtures systems group of BASF Construction Chemicals, Cleveland, Ohio. He is a Graduate of John Carroll University and has more than 20 years of experience in the development and application of concrete construction materials. He currently holds two patents and has published numerous technical papers on rheology and self-consolidating concrete. Mr. Daczko is the sole author of a book on SCC entitled “Self-Consolidating Concrete: Applying what we know”. He is a member and former Chairman of ACI Committee 237 - Self-Consolidating Concrete, and a member of ASTM C-9.47, Self-Consolidating Concrete. He is also active in the Precast/Prestress Concrete Institute (PCII) and the National Precast Concrete Association (NPCA). In 2007, Joe was awarded ACI’s Delmar Bloem Award for his leadership of ACI Committee 237 and was chosen by Concrete Construction magazine as one of the 10 most influential people in the concrete industry.

Presentation Overview

- Concrete Industry Challenges
- Hydration-Controlling Admixture Technology
- Why HCA is a Sustainable Technology
- HCA Applications, Financial and Environmental Impact Examples
- Innovative HCA Value Calculator, Economic and Sustainability Reports
- Take Away Messages

Concrete Industry Challenges

Returned Plastic Concrete

- Estimated 2% to 10% of all concrete produced is returned to the plant
- 2011 concrete production = 263M yd³ (201M m³)
- 5% return rate = 13.1M yd³ (10.1M m³)

Financial Impact

- R&M plant with annual production of 38K yd³ (29K m³)
- 5% return rate = 1,900 yd³ (1,453 m³)
- Materials cost of $53 per yd³
- Annual materials cost of $100,700
- Concrete waste recycle opportunity

Concrete Washwater

- Typically at the end of each work day, 225 gallons (850 L) of water are used to clean out each truck drum
- Example:
 - Plant with 10 concrete trucks
 - 240 working days per year
 - Disposal of 540K gallons (2.0M L) of washwater
 - Disposal of 720 tons (655 mt) of residue waste

Financial Impact

- Solid waste residue is equivalent to batching 380 yd³ (275 m³) of fresh concrete
- Materials cost of $53 per yd³
- Annual materials cost of $19,080
- Concrete wastewater and solid waste residue recycle opportunity
Innovative HCA Technology (Addressing Concrete Industry Challenges)

Hydration-Controlling Admixture
- Technology originally developed in 1986
- Ready-mixed concrete producer idea
- Chemistry controls (stops) cement hydration
- Seven current HCA applications:
 - Same day stabilization of returned plastic concrete
 - Overnight stabilization of washwater
 - Long-haul stabilization of fresh concrete
- Extended set time control of conventional concrete, preserving
- Ready-mixed concrete producer idea
- Technology originally developed in 1986

Why HCA is a Sustainable Technology

HCA Technology Reduces:
- Returned concrete waste
- Water needed to clean truck drums
- Concrete washwater waste
- HCA Value Calculator:
 - Determines the value of using HCA technology in one or more applications as a sustainable concrete practice
 - Creates economic and sustainability reports
 - Calculates environmental impact savings using Eco-Efficiency Analysis

Environmental Impact Categories

- Consumption of Energy
- Emissions
- Toxicity Potential
- Risk Potential
- Consumption of Raw Materials
- Land Use

Seven current HCA applications:
- Chemistry controls (stops) cement hydration
- Ready-mixed concrete producer idea
- Technology originally developed in 1986

How do you Measure Ecological Benefits?

Eco-Efficiency Analysis
Strategic life cycle method used to compare the relative ecological and economic efficiencies of alternative
- products (like concrete)
- processes
- technologies
ISO 14040 (ecological part)
 - Cradle-to-gate
 - Cradle-to-grave
 - Cradle-to-cradle

Eco-Efficiency Analysis for Concrete

Same Day Concrete Stabilization
- With HCA technology, stabilizes returned plastic concrete in a truck drum for a short time period (30 minutes to 4 hours)
- Use the combination of recycled and fresh concrete in non-critical project applications
- Concrete Producer Value:
 - Reduced concrete waste and disposal costs
Example: Concrete Stabilization

Financial Impact:
- Reduces returned concrete waste, disposal costs and batching of fresh concrete
 - 2011 production = 38K yd³ (29K m³)
 - 5% return rate = 1,900 yd³ (1,453 m³)
 - Materials cost of $53 per yd³
 - Annual materials cost = $103,700
- Typical HCA dosage = 7 fl oz/cwt (455 mL/100kg)
- Net annual material savings = $93,668

Environmental Impact:
- 5% return rate = 1,900 yd³ (1,453 m³)
- Equivalent concrete waste = 3,800 tons (3,455 mt)
- Same day concrete stabilization application recycles waste
- Annual Savings:
 - 1,255,356 kWh (4,511,001 MJ) of energy
 - Power for 108 U.S. homes
 - 1,159,363 lb (526,983 kg) CO₂
 - 61,019 gal (230,957 L) of gasoline
 - 165,426 lb (75,194 kg) solid waste
 - Waste equivalent to 33,085 people

Example: Washwater Stabilization

Financial Impact:
- Reduces water to clean truck drums, concrete washwater waste and disposal costs
 - 10 trucks using 225 gallons (850 L)
 - 360 yd³ (275 m³) concrete residue
 - Materials cost of $53 per yard³
 - Annual materials cost of $19,080
- Typical HCA overnight and weekend dosage = 32 fl oz (0.95 L) and 64 fl oz (1.9 L) per truck
- Net annual cost savings = $10,440

Environmental Impact:
- Overnight washwater stabilization application recycles residual waste
- 10 trucks = 540K gal (2.0M L) of water
 - Equivalent to:
 - Washing out 1,867 truck drums
 - 37,793 showers
 - 3.6M 1/2 L bottles of drinking water

HCA Application

Concrete Washwater Stabilization
- With HCA technology, stabilize concrete washwater in a truck drum for a long time period (overnight or over a weekend)
- Use recycled washwater as part of the mix water in freshly batched concrete

Concrete Producer Value:
- Reduced washer waste and disposal costs

Long-Haul Concrete Stabilization
- With HCA technology, stabilize fresh plastic concrete in a truck drum for a specific time period (generally 3 to 10 hours)

Concrete Producer Value:
- Increased revenues from having an expanded ready-mixed concrete delivery zone
- Reduced labor and material costs for constructing a portable concrete batch plant

Extended Set Time Control
- With HCA technology, extend concrete set time for a few minutes or hours as needed on a given project
 - Conventional concrete subjected to higher ambient temperatures
 - Truck breakdowns and job delays
 - Previous concrete
 - High early strength concrete (400 psi flex in 4 hours)

Innovative HCA Value Calculator

Concrete Producers Can Use To:
- Determine the value of using HCA technology in one or more applications as an economical and sustainable concrete practice

HCA Application

Concrete Stabilization
- With HCA technology, stabilize concrete and other materials for a long time period (overnight or over a weekend)
- Use recycled washwater as part of the mix water in freshly batched concrete

Environmental Impact:
- Same day concrete stabilization application recycles waste
- Annual Savings:
 - 1,255,356 kWh (4,511,001 MJ) of energy
 - Power for 108 U.S. homes
 - 1,159,363 lb (526,983 kg) CO₂
 - 61,019 gal (230,957 L) of gasoline
 - 165,426 lb (75,194 kg) solid waste
 - Waste equivalent to 33,085 people

Concrete Producer Value:
- Reduced washer waste and disposal costs
Economic and Sustainability Report

Take Away Messages

Hydration Controlling-Admixture Technology

- HCA chemistry controls cement hydration
- Seven applications for concrete producers
- Twenty-five years of industry experience

HCA Value Calculator:
- Creates economic and sustainability reports
- Calculates environmental impact savings

HCA technology helps concrete producers:
- Manage concrete and washwater waste streams
- Increase plant operational efficiency