

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

The History of Crystalline Waterproofing

- Early to Mid 40's Vandex invents Crystalline Waterproofing
 - Coatings and Hydraulic Cements
- Late 60 mid 75's
 - NA Manufacturer's Establish Xypex, Kryton, Others follow
- Mid 80's to Mid 90's
 - Crystalline Admixture introduced
- 2005 2010 Majors Introduce Crystallines BASF, Sika, Chryso

Crystalline Waterproofing Materials

Concrete is Porous and Permeable

How Crystalline Waterproofing Works

Calcium Hydroxide and other by-products of cement hydration / un-hydrated cement particles

+

Crystalline Waterproofing Chemicals

=

Non-soluble crystalline formation permanently fixed within the concrete's pore structure

Characteristics

- Because the crystalline waterproofing formation is within the concrete it cannot be punctured or damaged like a membrane or surface coating
- Crystalline waterproofing will withstand high hydrostatic pressure from both the positive and negative side
- Self heals cracks up to 0.4mm
- Crystalline waterproofing is highly resistant to chemicals
- Crystalline waterproofing is unaffected by humidity, ultraviolet light and oxygen levels

Permeability

Sample Refe	Sample Reference			Control Concrete					Crystalline treated Concrete				
Date of Cast				22/0	1/97					14/0	01/97		
Date of Coring			30/01/97			20/02/97			22/01/97			2/12/97	
Age of Curing (lays)		8			29			8			29	
Specimen Size	(mm)			150	x 50					150	x 50		
Specimen Refe	ence	1	2	3	1	2	3	1	2	3	1	2	
Volume of wate through the same													
At 1 bar on	1 st day	0	0	0	0	0	0	0	0	0	0	0	
At 2.4 bar on	2 nd day	0	0	0	0	0	0	0	0	0	0	0	
At 4.2 bar on	3 rd day	0	0	0	0	0	0	0	0	0	0	0	
At 7.0 bar on	4 th day	0	0	0	0	0	0	0	0	0	0	0	
	5 th day	10	0	4	10	0	0	0	0	0	0	0	
	6 th day	30	20	25	74	13	0	0	0	0	0	0	
	7 th day	65	20	60	78	20	0	0	0	0	0	0	
	8th day	70	30	60	45	10	0	0	0	0	0	0	
	9th day	70	30	60	35	10	0	0	0	0	0	0	
	10 th day	70	30	60	46	10	0	0	0	0	0	0	

General Test to Establish pH Range

- ASTM C-267-77 "Chemical Resistance of Mortars"
- 4,000 psi, non-air entrained concrete
- Crystalline treated and untreated samples had 84 day exposure time
- Seven chemicals with pH range from 3.5 11.0
- Compressive strength testing at conclusion

27 m	Restricts Chloride Ion Diffu Australian Centre for Construction Innovation								
	CHLORIDE PENETRATION TESTS ON			Table 2-A De	scription of CI	hloride Res	istance	Test Methods	
	XYPEX ADMIX C-1000NF	and the second se			Bource		-	bjectives	
	MODIFIED COMMERCIAL CONCRETES	Raj	old Chi Te	A CONTRACTOR OF		Electrical indi chilonde ion p		concrete's abilit	ty to resist
M			Nord	Test NT BI	JILD 443,		cients of c	penettation dept oricrete after inve for 35 days	
	AUSINDUSTRY START RESEARCH PROJECT			Tabl	e 3-A Sum	mary of Tes	t Result	s CSIRO	NT BUILD
SOL		Mix Code	W/C Ratio	Cement Type and Content (kg)	C-1000NF	Stre	ngth 28 days	Modified ASTM C1202	(Chlorid Penetratio Depth)
ALC: N		GPC	0.55	GP (330)	NR	24,1	43.8	Control	Control
		GPX1 GPX2	0.55	GP (330) GP (330)	0.8%	26.1 27.2	48.8	-7%	- 10%
27-2		GPX2 FAC		GP (330) 20% Fly Ash (360		27.2	46.8	-16% Control	+ 32% Control
8.2	By Gary Kao	FAX1	0.50	20% Fly Ash (360	0.8%	25.4	44.6	- 27%	- 38%
	B.Mat.E, MSc, UNSW	FAX2				26.1	44.9	- 41%	
		FAX3		40% Fly Ash (380	0.8%	21.1	39.3		
1	Research Engineer	SC	0.55		NI	17.4	40.2		Contro

Improves Concrete's Durability - Chlorides

Sulfate Resistance

Ammonium Sulfate Exposure

Taywood Engineering, Sydney, Australia

1 molar - 132 g/l

Six mixes: control, low slag cement, silica fume, high slag cement, silica fume cement, Crystalline Admix

Results of Exposure Trials										
	MIX DESIGNATION									
Component	GB80	GP	LH	SR	SF	ADMIX				
Total Percentage Weight Loss	14.60	12.00	28.40	7.20	8.80	8.80				
Loss Percentage Length Change	0.01	-	0.12	0.00	-0.01	-0.02				

Note 1: Total Percentage Weight Loss is given for 25 weeks exposure. Note 2: Percentage Length Change is given as the change compared to the GP mix, at 25 weeks.

Sulfate Resistance

Acid Resistance

Acid Resistance

Sulfuric Acid Exposure

Japan Atomic Energy Research Institute – Tokyo, Japan (1989)

As part of a study on the diffusion of Cesium₁₃₇ in Crystalline treated and untreated mortar samples a number of different tests were conducted one of which was the immersion of samples in a 5% sulfuric acid solution for 100 days.

Crystalline reduced acid attack by 45%

JAERI - M 89-211		ochemical chara eable cement m	acteriatics of ce ortar.	ment mortar and
セメントモルテル中のPCLの鉱物に関する研究	Physicochemical characteristics	Cement mortar	Impermeable cement mortar	Analytical method
	Specific gravity {c/cm ³ }	1.989	2.028	J15-A-1202-1978
11011000	Tri-axial compressive strength (kg/cm ²)	300	344	J15-A-1108
24 2	Water permeation distance (mm)	84	4	PIN-1048 Permitability test (Input method . Contact time :4day)
	Cerrosion ratio	0. 210	8.117	Resistance to acid attak test (SSH950+ solu., Contact time:10004ay)
	Carbonated thickness (mm)	14.4	8.4	(CO) gas conc. 5% . Temp. 30°C . Contact time:100day)
日 本 田 キ カ 田 元 所 Japan Alanic Targer Regards ballers	Brying shrinkage ratio	1.2×10 ⁻¹	1.0×10^{-3}	J15-A-1129 (Reasurement of length change , Contact time:100day)

Where is Crystalline not appropriate?

- Highly Acidic Environments pH < 3
 - High H2S Sewerage Locations
 - Concentrated Acidic Process Environments HCL mfg plant
- High Alkaline Environments
 - Green Liquor Tanks in Pulp Mills
- Other Exceptions
 - Sugars, Ammonium Phosphate, Low Langelier Water

Coating

- Applied as a highly concentrated cement slurry solution
- Crystalline chemicals diffuse through water in saturated substrate
- Ideal for 'negative side' waterproofing

Coating How Deep Does It Penetrate

Admixture Application Benefits

- Adding crystalline waterproofing admixture at the batch plant ensures uniform distribution throughout the concrete and structure
- Makes concrete waterproof, reduces shrinkage cracking and increases compressive strength
- Same crystalline structure as the coating
- Construction costs significantly
 reduced break even to Coatings
 at about 16" thick profile

Sewerage – MIC Application

Sewerage – MIC Application

Acid / Caustic Resistance

Milton Creamery, Milton Iowa

Typical Phosphoric Acid / Sodium Hydroxide daily wash routine. Floor treated with experimental double standard Crystalline Admixture dosage. After 7 years floor shows remarkably little degradation.

Acid Resistance

<image><image><text><text>

Petrochemical Containment

Petrochemical Containment

Other Secondary Containment

<image><image><section-header><text><text><image>

21

Silage

Longevity of Crystalline Effect

Sea-Tac Airport Seattle, USA

In 1973 water leaking into the Sea-Tac Airport tunnel covered the electrified rails. Crystalline materials were successfully applied to leaking cracks and faulty construction joints throughout the 4.5 mile (7 km) long underground tunnel. 1980 Letter of reference says tunnels dry. Tunnels still dry today.

Summary of Crystalline Waterproofing

- Waterproofs and protects concrete against mild to moderate chemical attack.
- **Permanent, integral solution** for new systems and rehabilitation.
- Advantages of barrier systems, with none of the disadvantages.
- Proven worldwide through thousands of projects successfully completed and independent testing.

45

