The effective use of Moisture Equipment to control the water content during SCC Production

Neal Cass
Technical Sales Manager
Hydronix Ltd.
The Effect of Varying Moisture

- Weighing
 - 1,000kg (2,200lb) Sand
 - 1,000kg Sand at 3% moisture: 971kg (2,136lb)
 - 1,000kg Sand at 7% moisture: 935kg (2,057lb)

- Proportioning
 - 1,000kg (2,200lb) Sand
 - 900kg (1,980lb) Aggregate
 - 1,000kg (2,200lb) Sand at 3% moisture: 971kg (2,136lb) Aggregate at 7% moisture: 941kg (2,076lb)
 - Sand:Aggregate Ratio = 1.15
 - 1,000kg (2,200lb) Sand at 7% moisture: 935kg (2,057lb) Aggregate at 3% moisture: 941kg (2,076lb)
 - Sand:Aggregate Ratio = 1.07

Effect of Moisture on Mix Water

- Example concrete mix
 - Cement = 350kg/m³ (589lb/yd³)
 - Sand and aggregate = 1,900kg/m³ (3,190lb/yd³)
 - Water added in mixer = 175kg/m³ (294lb/yd³)

- Variation of 1.0% in sand and aggregates (after any correction for moisture)
 - Water in aggregates = 1900 * 0.01 = 19kg (42lb or 5gal)
 - Actual water in mix = 175 + 19 = 194kg (427lb or 51gal)
 - So 10% extra water is included in the mixer

- Improvement by 0.8% in sand and aggregates
 - Water in aggregates = 1900 * 0.002 = 3.8kg (8lb or 1 gal)
 - Actual water in mix = 175 + 3.8 = 178.8kg (393lb or 47 gal)
 - So only 2% extra water is included in the mixer

 Small changes in sand and aggregate moisture = large changes in final mix

Mix Homogeneity

- Moisture variation in mixer
 - Dry mix
 - Needed to record good average values for control systems
 - Wet mix
 - Homogeneity indicates good dispersal of SCC admixture
 - Final mix homogeneity important for consistency of final product
 - This mixing and homogeneity = do not overmix

Aggregate Moisture Control

- Moisture measurement equipment
 - Measurement in aggregate bins or on conveyor belts
Aggregate Control

- Calibration
 - Simple calibration process
 - Sample material being measured whilst recording sensor value
 - Test sample in laboratory
 - Moisture given by formula:
 \[M = \frac{W_{wet} - W_{dry}}{W_{dry}} \]
 - Good quality equipment needs no recalibration
 - Check calibration every 1-3 months

- Control Example
 - Weigh 75% of target weight
 - Calculate average moisture of material
 - Recalculate target weight
 \[T_{new} = T_{old} + \frac{W_{wet} - W_{dry}}{W_{dry}} \]
 - Dose remaining weight

Aggregate Control

- Control Example
 - Example weighing 1000kg (2,200lb)
 - Step 1: Weigh 75% (750kg (1,650lb))
 - Step 2: Read average moisture from sensor (5%)
 - Step 3: Recalculate target
 - New Target = 1000 + (1000 * 5/100) = 1050kg (2,310lb)
 - Step 4: Dose remaining material (1050 – 750 = 300kg (660lb))

Controlling the water

- In the mixer
 - Load materials
 - Measure in the dry mix
 - Add water to reach a target moisture value
 - Wet mix

Microwave Moisture Sensors

- A cost effective moisture solution
 - Payback for a sensor and installation is less than 3 months (based on 50m³/day)
 - What to look for in a microwave moisture sensor
 - Rugged/Reliable
 - Sensor is designed for use in aggregates/concrete
 - Accurate and easy to calibrate
 - Linear calibration will give an accuracy of 0.2%
 - Temperature stable calibration
 - Easy to integrate
 - 0-20mA, 4-20mA and 0-10v Analogue Outputs
 - Local presence for training, service and support
 - A proven brand
How Microwave Technology Works

- Hydronix measures the dielectric properties of materials

"Classic" microwave measurement was at a fixed frequency

![Amplitude vs Frequency Graph](image)

Digital Moisture Measurement Techniques

- Resonant frequency shifts have a linear relationship with moisture variation in many non-metallic materials

For ease of use:

- \(f_{\text{water}} = 100 \) unscaled
- \(f_{\text{water}} = 0 \) unscaled

New Measurement Techniques

- Raw mixer sensor traces
 - Show noise from mixing blades
 - V Mode Measurement shows improved signal level and also reduced noise

- Reduction of noise from mixing shovels
 - Reduces amount of post processing needed

New Sensor Features

- Digital Signal Processing
 - Reduced timing inaccuracies
 - Reduces low level from noise
 - Improves stability of signal

![Raw and Smoothed Output Graph](image)
Hydro-Control VI

- Produce consistent, high quality batches
- Automatic or manual operation
- 3 water addition modes to reach moisture target
- Control fine and coarse valves for accurate control of moisture in mixer
- Stores up to 32,000 recipes
- Graphical display of moisture throughout the batch
- Repeatable batches +/- 0.1% moisture
- Calibrate recipe to a previous 'good' batch
- Records batch history of previous 1,000 batches

Conclusions

- Aims
 - Control the moisture in the aggregates
 - Control the water addition into the mixer
 - Reduce the number of wasted batches
- Solutions
 - Sand and aggregate bin sensors
 - Mixer sensors
 - Water control systems

Thank you