ACI Web Sessions

ACI is bringing you this Web Session in keeping with its motto of “Advancing Concrete Knowledge.” The ideas expressed, however, are those of the speakers and do not necessarily reflect the views of ACI or its committees.

Please adjust your audio to an appropriate level at this time.

ACI Web Sessions

ACI Web Sessions are recorded at ACI conventions and other concrete industry events. At regular intervals, a new set of presentations can be viewed on ACI’s website free of charge.

After one week, the presentations will be temporarily archived on the ACI website or made part of ACI’s Online CEU Program, depending on their content.

Desmond Bull ME (Civil), FIPENZ, CPEng Technical Director of Holmes Consulting Group Ltd. Marketing and development of structural engineering services for HCG, emphasizing concrete structures (commercial and bridges). Practicing structural engineer for 30 years. Holcim Adjunct Professor in Concrete Design, at the Department of Civil and Natural Resources Engineering, University of Canterbury, lectures on design of concrete structures. Initiating and supervising a number of research programs over the last 18 years. Past President of the NZ Concrete Society and served on the Revision Code Committees for NZS 3101: Concrete Structures and NZS 1170.5: Earthquake Loads. Serves on the Engineering Advisory Group: Seismic Performance of Commercial Building, for the Department of Building and Housing, Government of New Zealand. Des is the Senior Structural Specialist, Field Operations, NZ Urban Search & Rescue of the NZ Fire Service. During the Christchurch earthquakes, was firstly involved with search and rescue and then with the deconstruction of dangerous buildings in the CBD. Des has written or co-written some 130 papers and 8 design guidelines/manuals.

Post-Earthquake Repairs, Part 2

ACI Spring 2012 Convention
March 18 – 21, Dallas, TX

The Performance of Concrete Structures in the Canterbury Earthquakes:

Lessons to be Learned and the Future of Concrete Buildings

Des Bull
New Zealand

The Performance of Concrete Structures in the Canterbury Earthquakes:

Some Issues relating to Repairs

Des Bull
New Zealand
New Brighton Pier
Christchurch NZ

Magnitudes and Intensities

- In Christchurch CBD
 - September 4: Mw 7.1, MMI 7-8, 15 sec
 - December 26: Mw 5.1, MMI 7-8, 5 sec
 - February 22: Mw 6.3, MMI 9-10, 7 sec
 - June 6: Mw 5.5, MMI 6-7, 5 sec
 - June 13: Mw 6.3, MMI 7-8, 9 sec
- 6 km deep and 20 km from CBD
- Effect at the site is dependent on magnitude, depth, proximity, soil type, and duration

Chch September 4

Some Issues relating to Repairs

1. Concrete Strength
 - Far higher than expected?
2. Residual Plastic Capacity of Rebars & Structural steel
 - All been used up?
3. Floor Plates/Diaphragms
 - Repairs
 - Load paths
 - Elongation of Plastic Hinge Zones.
1. Concrete Strength

- Higher than in lab testing
 - Target strength for supply: 1.2 times 28 day f'_{c}
 - Aging strength gain: 1.5 times
 - Rapid rate of loading – seismic deformations
 - 1.2 – 1.4 times, possibly higher
 - Total increase over 28d f'_{c}: 2.0 – 2.5 times

Implications:
- Minimum longitudinal reinforcement requirements, based on f'_{c}:
 - INADEQUATE ? - PROBABLY

Case studies:
- Failure of bars in walls
- Inelastic capacity of bars exhausted

2. Residual Plastic Capacity of Reinforcing Bars & Structural Steel

- Cracking in Plastic Hinge Zones:
 - Limited a few cracks, rather than “100s” seen in lab tests.
 - At the cracks, localised strains the longitudinal bars are relatively higher than seen in tests.
 - Inelastic capacity of bars exhausted
Inelastic capacity of bars exhausted?

- For an engineering assessing a building:
 - Can the building withstand the aftershocks to come?
 - Safe to reoccupy?
 - Is it repairable?
 - In Chch, no...
 - Most damaged buildings have little inelastic capacity left.

Inelastic capacity of bars - verification

- **Leeb Hardness test** (a dynamic hardness)
 - Portable test equipment, testing at the location being investigated.
 - Leeb Hardness (HL) is related to the location on the stress strain curve of the element.
 - Stressing of selected (parent material) under strain, calibrates the insitu HL readings.

Leeb Hardness

- Open up side of RC beam

Eccentrically Braced Frames

EBFs: Leeb H and coupons
Eccentrically Braced Frames (EBFs): Leeb H and coupons

- Weld in wrong place
- Bending of lower flange

Eccentrically Braced Frames (EBFs): Leeb H and coupons

- Blue and Red very high strains
- Cut EBF out and weld or bolt in new piece

Critical Structural Issues

- Conventional Beams:
 - Yield or go plastic
 - Elongate under cyclic loading from earthquake
 - Concrete worst
 - Then steel
 - Then timber (in connection hardware)
 - Loss of floor support
 - Loss of load path across

Plastic Hinge in a RC Beam

- Conventional Beams:
 - Yield or go plastic
 - Elongate under cyclic loading from earthquake, up to 4% of beam depth

Elongation of the beams – push the columns

- Loss of connection: floor - supports

Total Collapse of the floor

- Interstorey drift (%):
 - 1.0
 - 2.5
 - 3.5
 - -3.5
 - -2.0
 - 0
 - 0.5
 - 2.5
 - -0.5
 - -2.5

Matthews et al. 2008
Clarendon, Chch 2011
- 18 storeys

Red arrows:
Beam elongate pushing the corner column away from the floor.

Flange hung detail
Flange hung detail

Elongation of the beams – push the columns
- Loss of connection: floor - supports

Available Force paths across Floor Diaphragms
- Loss of connection: floor - supports

Clarendon, 1987
Concluding comments:

1. Minimum flexural steel based on a realistic concrete strength
 - Damaged structures will need to have residual plastic capacities investigated.
2. Residual Plastic Capacity of Rebars & Structural steel have been found to be small
 - Damaged structures will need to have residual plastic capacities investigated.
 - By be not be repairable or may be too costly

Concluding comments: cont.

3. Floor Plates/Diaphragms
 - Elongation of Plastic Hinge Zones in beams cause severe, localised damage and gravity capacity and in-plane diaphragm actions are compromised. Exterior columns can become unstable.
 - Repair will be difficult: gravity and diaphragm action
 - Replace reinforcement in the floor (in critical areas?)

Transpot Beam: as-built! %$**

Thank you... Any questions, if there is time?