Utilizing Large Laboratory Specimens to Develop Field Evaluation Techniques for Reinforced Concrete

Tourney Consulting Group, LLC
Kalamazoo, MI

Neal S. Berke, Ph.D., FACI, FASTM, FNACE
Brooks E. Bucher, P.E., NACE CP Technologist
Kristin M. Ade, EIT

Structural Health Monitoring of Concrete Structures (Durability)—Tribute to Richard Weyers
Overview

• Introduction
• Review of Techniques Used to Determine Corrosion Rates in the Laboratory
• Need for Accurate Field Method
• Large-size Laboratory Specimens
 – Simulate larger field structures
 – Easier to confirm results using laboratory methods and autopsies
• Corrosion Potential Mapping
 – Quick technique that can evaluate large areas at a time
 – Large lab specimens potential mapping vs. other techniques
 – Example from the field from previous work with R. Weyers
• Conclusions
Introduction

• Assessing the corrosion activity in the field
 – Provides information on current condition
 – Can be used to predict future performance/time to repairs

• Problems in the field
 – Traffic Control and limited time at each location for measurements
 – Many laboratory techniques are not practical
 • Time constraints
 • Uncertainties in the area of steel affected

• Relatively quick, but accurate
 – Good qualitative assessment
 – Semi-quantitative or quantitative
 – Return to areas showing distress with more detailed analysis if required
Review of Lab Techniques

• Electrochemical Techniques (ND)
 – Corrosion Potential Measurements
 – Polarization Resistance
 – Electrochemical Impedance Spectroscopy (EIS)
 – Macrocell techniques

• Other Techniques
 – Mass Loss (D)
 – Visual appearance of surface (ND)
 • Surface Staining
 • Cracking
 – Detailed microscopic analysis (D)
Corrosion Rate Measurements
Corrosion Potential Mapping
Large-Size Laboratory Specimens to Correlate Potential Mapping to Corrosion Activity

- Need large specimen that can be used to evaluate corrosion potential measurements vs. other laboratory techniques.
- Design from USBR Standard Protocol to Evaluate the Performance of Corrosion Mitigation Technologies in Concrete Repairs-- M-82 (M08200000.714).
 - 40” x 40” x 5.5” slabs
 - 6-No. 4 reinforcing bars in top mat
 - Heavy wire mesh to provide cathode for macrocell corrosion
 - Cyclic Ponding with NaCl
Configuration of Slabs

- No. 4 Rebar with 0.75 to 1.5” Cover (M-82 is 1-inch, ½” aggregate)
- W4/W4 6x6 WWF bottom layer with 1-in. cover
- NEMA-4X Electrical Connection Box

- RH, ρ, Core area
- 40 in x 40 in x 5.5 in
Electrical Wiring

Wire Junction Box

W4/W4 6x6 WWF

No. 4 Steel Reinforcing Test Bar

RH, ρ, Core Sample area

11" 5" 5" 5" 5" 5" 4"
Corrosion Monitoring

- Corrosion Potential (ASTM C876)
- Macrocell Corrosion Current
- Mat-to-Mat Resistance
- Electrical Resistivity
- Chloride Profiles
- Internal Relative Humidity (Future)
Corrosion Monitoring

- Macrocell Corrosion Current
- Mat-to-Mat Resistance
- Electrical Resistivity
- Half-Cell Potential
Half-Cell Potential Mapping, -mV CSE$_{77}$
Destructive Analysis

- 0.50 w/c
- 0.75” Cover
Half-Cell Potential, -mV CSE$_{77}$

<table>
<thead>
<tr>
<th>Slab #53</th>
<th>Integrated Current (Coulombs)</th>
<th>Half-Cell Potential (mV CSE$_{77}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebar</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10128</td>
<td>34483</td>
</tr>
<tr>
<td></td>
<td>-514</td>
<td>-562</td>
</tr>
</tbody>
</table>
Comparison of Potential Map to Corrosion Rates

Contour Plot of Potential for Bridge Deck (Blacksburg, VA)

LP \(I_{\text{corr}} \) measurements in boxes

Replotted from Berke, Dallaire, WEYERS, Henry, Peterson, and Prowell, ASTM STP 1137, 1992
Conclusions

- Large Laboratory slabs demonstrate that corrosion potential mapping correlates to the corrosion activity as measured by electrochemical methods and autopsy of the specimens.
- Good correlation to the field was shown.
- A potential map can be performed with only a few seconds per measurement point, versus 10 minutes plus for polarization resistance or similar techniques.
- Thus, potential mapping is a practical means of evaluating corrosion performance in the field.
Questions/Comments?