Utilizing Large Laboratory Specimens to Develop Field Evaluation Techniques for Reinforced Concrete

Tourney Consulting Group, LLC Kalamazoo, MI

Neal S. Berke, Ph.D., FACI, FASTM, FNACE Brooks E. Bucher, P.E., NACE CP Technologist Kristin M. Ade, EIT

Structural Health Monitoring of Concrete Structures (Durability)—Tribute to Richard Weyers

Overview

- Introduction
- Review of Techniques Used to Determine Corrosion Rates in the Laboratory
- Need for Accurate Field Method
- Large-size Laboratory Specimens
 - Simulate larger field structures
 - Easier to confirm results using laboratory methods and autopsies
- Corrosion Potential Mapping
 - Quick technique that can evaluate large areas at a time
 - Large lab specimens potential mapping vs. other techniques
 - Example from the field from previous work with R. Weyers
- Conclusions

Introduction

- Assessing the corrosion activity in the field
 - Provides information on current condition
 - Can be used to predict future performance/time to repairs
- Problems in the field
 - Traffic Control and limited time at each location for measurements
 - Many laboratory techniques are not practical
 - Time constraints
 - Uncertainties in the area of steel affected
- Relatively quick, but accurate
 - Good qualitative assessment
 - Semi-quantitative or quantitative
 - Return to areas showing distress with more detailed analysis if required

Review of Lab Techniques

- Electrochemical Techniques (ND)
 - Corrosion Potential Measurements
 - Polarization Resistance
 - Electrochemical Impedance Spectroscopy (EIS)
 - Macrocell techniques
- Other Techniques
 - Mass Loss (D)
 - Visual appearance of surface (ND)
 - Surface Staining
 - Cracking
 - Detailed microscopic analysis (D)

Corrosion Rate Measurements

Corrosion Potential Mapping

Large-Size Laboratory Specimens to Correlate Potential Mapping to Corrosion Activity

- Need large specimen that can be used to evaluate corrosion potential measurements vs. other laboratory techniques.
- Design from USBR Standard Protocol to Evaluate the Performance of Corrosion Mitigation Technologies in Concrete Repairs-- M-82 (M0820000.714).
 - 40" x 40" x 5.5" slabs
 - 6-No. 4 reinforcing bars in top mat
 - Heavy wire mesh to provide cathode for macrocell corrosion
 - Cyclic Ponding with NaCl

Configuration of Slabs

Electrical Wiring

Corrosion Monitoring

- Corrosion Potential (ASTM C876)
- Macrocell Corrosion Current
- Mat-to-Mat Resistance
- Electrical Resistivity
- Chloride Profiles
- Internal Relative Humidity (Future)

Corrosion Monitoring

Half-Cell Potential Mapping, -mV CSE₇₇

Destructive Analysis

- 0.50 w/c
- 0.75" Cover

Rebai	/	0	5	4	5	Z	Average	TOLAI
Integrated Current (Coulombs)	10128	34483	656	0	10669	35106	15174	91042
Half-Cell Potential (mV CSE ₇₇)	-514	-562	-428	-395	-529	-508	-489	-

Comparison of Potential Map to Corrosion Rates

Replotted from Berke, Dallaire, WEYERS, Henry, Peterson, and Prowell, ASTM STP 1137, 1992

Conclusions

- Large Laboratory slabs demonstrate that corrosion potential mapping correlates to the corrosion activity as measured by electrochemical methods and autopsy of the specimens.
- Good correlation to the field was shown.
- A potential map can be performed with only a few seconds per measurement point, versus 10 minutes plus for polarization resistance or similar techniques.
- Thus, potential mapping is a practical means of evaluating corrosion performance in the field.

Questions/Comments?