2023 ACI FRP Composites Competition

Reinforcement Identification Guide and Product Datasheets

BasaFlexTM, BFRP Rebar, Basanite Industries https://www.basaniteindustries.com/products.html

MST Rebar, Inc., Structural Rebar https://www.mstrebar.com/products

GBar , AIT Composites Advanced Infrastructure Technologies, $\underline{\text{https://www.aitcomposites.com/gbar}}$

PINKBAR® Fiberglas™ Rebar, Owens Corning Infrastructure Solutions https://www.owenscorning.com/en-us/composites/products/product-types/fiberglass-rebar

BasaFlex™ BFRP Composite Rebar is a sustainable, rust proof alternative to traditional steel reinforcement. Comparatively, it's only 25% of the weight of steel, and has a Specific Tensile Strength that is 2.5 times greater! This equates to enhanced Jobsite Safety, with significant savings in transportation and handling costs.

BasaFlex™ is made from volcanic rock, and has a Coefficient of Thermal Expansion similar to concrete. This homogeneous behavior reduces the cracking mechanism during extreme temperature fluctuations and / or concurrent disparity.

BasaFlex™ is Engineered to last for >100 years, and an excellent choice when considering continuous reinforcement that will <u>never</u> rust, or require long-term maintenance costs. Unlike steel or other FRP's, BasaFlex is highly resistant to attacks from alkali, chemicals or water.

Non-Corrosive Benefits

- No added maintenance cost during the service life of the structure, unlike steel and other FRP's.
- Reductions in the overall concrete cover (usually required due to degradation from steel corrosion) can now be considered.
- Similarly, expensive waterproof sealants, coatings and/or special concrete additives are no longer necessary to resist or prevent steel corrosion.
- Even chloride contaminated concrete constituents, such as water (saltwater) and aggregates, as well as chloride-based accelerators and cement without chloride limits can now be used without detriment.

Typical Applications

Concrete Containment Structures

- Waste Water Treatment Facilities
- Swimming Pools; Petro Chemical Tanks

Concrete Exposed to De-Icing or Marine Chlorides

- Bridges & Railings; Median Barriers
- Parking Structures
- Continuously Reinforced Concrete Paving
- Precast Elements; Sea Walls; Dry Docks; Port Aprons

Reduced Weight in Architectural Elements

Masonry Strengthening

- Seismic, Wind or Blast Strengthening
- Strengthening for "Event & Cycle Loading"

Tunneling & Mining

Temporary Reinforcement; Rock Bolts

Concrete Exposed to High Voltage and Electromagnetic Fields

- High Voltage Substations; Radio Frequency Sensitive Areas
- Hospital MRI Areas, Cable Ducts and Banks
- Aluminum Smelters and Steel Mills

APPROVALS & GOVERNED USE:

BasaFlex™ is an approved reinforcement product according to ACI 440R-07 covering Basalt, Glass, Carbon and Aramid FRP's. It's used as per ACI 440.1R-06, and its construction use is dictated by Code 440.6-08, and tested according to ASTM D7205, and 5 other ASTM methods: demonstrating BasaFlex exceeds all performance requirements of ACI 440.6-08.

BasaFlex™ can be placed to meet code requirements (or equivalent) by using the calculations and installation guidelines for BFRP reinforcement of concrete as defined in ACI 440.6-08. Recommendations for maximum deflection and shear of concrete elements reinforced with FRP rebars are presented in ACI 440.1R-06, and specified by 440.5-08.

The use of BFRP is further Approved under the ICC Evaluation Service, Acceptance Criteria for Fiber-Reinforced Polymer (FRP) Bars, for Internal Reinforcement of Concrete Members [AC454] dated June 2016.

ASTM Standards

D570 Standard test method for water absorption of plastics

D619 Standard practice for conditioning plastics for testing

D695 Standard test method for compressive properties of rigid plastics

D7205 Standard test method for tensile and tensile modulus

D790 Standard test method for flexural properties of unreinforced and reinforced plastics

D792 Standard test method for density and specific gravity

D2734 Void content of reinforced plastics

D3410 Standard test method for compressive properties of polymer matrix composite materials

Design Manual: Isis Design Manual #3: Reinforcing concrete structures with fiber reinforced polymers (FRP's)

Performance Properties of BasaFlex #3 Bar Key Values and Benefits

Ultimate Tensile Strength	1125.1	MPa
Peak Load	79.9	kN
Guaranteed Peak Load	74.5	kN
Modulus of Elasticity	56.7	GPa
Transverse Shear Strength	267.0	MPa
Horizontal Shear Strength	55.8	MPa
Peak Force	6.0	kΝ
Ultimate Strain	2.0	%

- Stronger, Tougher and Lighter than steel
- Rust Proof: 100+ Year Reinforcement
- Naturally resistant to alkali and acids
- No need for special coating like GFR Rods
- Does not conduct electricity; non-magnetic
- No interference with RF signals; UV Stable
- #3 BasaFlex Composite Rebar replaces #4 Steel Rebar for all types of Secondary Reinforcement & Crack Prevention
- Excellent for harsh environments

Disclaimer of Warranties & Limitation of Liability

Seller and Manufacturer do not make any warranty of any kind regarding this product, either express or implied, including without limitation, any implied warranty of merchantability, fitness for a particular purpose, condition, design, or quality. Buyer's exclusive remedy, and the seller's and the manufacturer's exclusive liability for any claims, losses, damages, or injuries resulting from the use of this product, shall be limited to the replacement of the product with respect to which damages are claimed. In no case shall the seller or the manufacturer be liable for direct, consequential, special, incidental, punitive, or indirect damages resulting for the purchase or use of this product. Buyer accepts this product subject to this foregoing disclaimer, and purchases and uses this product at buyer's own risk. No employee, or agent of seller, or the manufacturer is authorized to vary the terms of this disclaimer in any manner.

MST-BAR® Grade III GFRP

IMPERIAL		#2	#3	#4	#5	#6	#7	#8	#9	#10	#11
METRIC		6	10	13	16	20	22	25	29	32	36
Minimum Tensile	kN	33	74	132	202	285	390	507	650	819	1000
Load	lbf	7419	16636	29675	45411	64070	87675	112180	146126	184118	224810
Cross Sectional Area	mm2	32	71	132	201	285	387	491	645	819	1007
Weight	kg/m	0.12	0.22	0.35	0.5	0.7	0.9	1.22	1.4	1.72	2.15

Guaranteed Tensile	>1000 MPa
Strength	>145 Ksi
Young's Modulus , E	>60GPa >8702KSI
Ultimate Strain , ɛfu	>1.7%
Transverse Shear	>220 MPa
Strength , τ	31.9 ksi
Bond Strength to	20 MPa Minimum
Concrete	2900 Psi Minimum

Strength of Bend (Straight Portion)	>900 MPa
Strength of Bend (Bend Portion with Minimum Radius Bend : 4x Diameter of Bar)	>600 MPa
Young's Modulus , E (Bend Bar)	50 GPa
Glass Transition Temperature, Tg°	125C°

The #1 Solution to Concrete Reinforcement

sales@mstbar.com www.mstbar.com 416-740-0344

MST-BAR® Manufactured by MST Rebar Inc.

AIT Composites **GBar®** is a **non-corrosive** and **high-performance** FRP rehar superior to basic steel rebar. rebar superior to basic steel rebar.

ASTM D7957	Units	#3 (10mm)	#4 (13mm)	#5 (16mm)	#6 (19mm)
Guaranteed Ultimate Tensile	kN	71.80	130.00	177.80	207.10
Force (ASTM D7205)	kip	16.10	29.20	39.70	46.60
Mean Tensile Modulus (ASTM D7205)	GPa	74.97	71.23	71.05	67.38
	ksi	10873.50	10331.04	10304.93	9772.64
Guaranteed Ultimate	MPa	191	143	182	176
Transverse Shear (ASTM D7617)	ksi	27.80	20.74	26.40	25.53

Available in sizes #3 - #10

Visit our website to learn more and view our full product line.

PINKBAR®+ Fiberglas™ Rebar is a stronger, lighter weight, rustproof concrete reinforcement designed to meet the codes and standards you trust, help you increase on-site productivity and deliver more durable structures.

 GLAS-POWERED™ by Owens Corning corrosion-resistant Advantex® Fiberglas™

STRONGER, LIGHTER, CODE-APPROVED, RUSTPROOF.

Product Advantages Compared to Steel

STRONGER

 2x stronger in tensile strength compared to the same size diameter

LIGHTER

- Up to 7x lighter in concrete flatwork applications¹
- 4x lighter compared to the same size diameter

RUSTPROOF

 PINKBAR®+ will never rust, enabling more durable structures

ENHANCED PRO EXPERIENCE

- · Scratch-free, heat-free handling
- High-visibility color
- Non-conductive
- $1 \quad \#3 \ PINKBAR @ \ replaces \ \#4 \ steel \ rebar \ in \ flat work \ applications \ requiring \ reinforcement \ for \ shrinkage \ crack \ mitigation.$

Code-Approved and Proven Performance

ASTM D7957 & CSA S807

 PINKBAR®+ Fiberglas™ Rebar by OCIS complies with ASTM D7957 and CSA S807 material standards.

ACI 332 & ACI 440

• PINKBAR®+ Fiberglas™ Rebar by OCIS can be used in residential concrete, including footings and foundation walls, as prescribed in ACI 332 using ACI 440 design methodology.

ICC-ES AC454

 Meets or exceeds ICC-ES AC454 acceptance criteria, including bond strength, tensile strength, and tensile modulus of elasticity.

TMS 402/602

• PINKBAR®+ Fiberglas™ Rebar by OCIS can be used with TMS 402/602-22 Appendix D as reinforcement for masonry walls.

Applications

PINKBAR®+ Fiberglas™ Rebar by OCIS is designed to reinforce concrete in:

RESIDENTIAL	COMMERCIAL/ INDUSTRIAL	TRANSPORTATION	MARINE	HIGH VOLTAGE & ELECTROMAGNETIC FIELDS
Driveways Sidewalks Pool Decks Basement Floors Basement Walls Footings Concrete Masonry ICF Construction	Parking Slabs Warehouse Floors Agricultural Slabs Loading Docks Architectural Precast Truck Aprons Pour Back Slabs	Bridge Decks Traffic Barriers Civil Roadways Soft-Eye for Tunnels	• Seawalls • Piles	Light & Heavy Rail MRI Rooms

Physical & Mechanical Properties

NOMINAL DIAMETER		NOMINAL CROSS- SECTIONAL AREA		WEIGHT/		GUARANTEED ULTIMATE TENSILE FORCE TENSILE FORCE STRENGTH		ULTIMATE TENSILE STRAIN	MEAN TENSIL MODUI ELAST	US OF	FIBER MASS CONTENT			
Bar Size	in	mm	in ²	mm ²	lb/ft	kg/m	kip	kN	ksi	MPa	%	Msi	GPa	%
#3	0.375	10	0.11	71	0.11	0.16	16.0	71.00	145.0	1003	1.86%	6.80	46.88	≥70
#4	0.500	13	0.20	129	0.18	0.27	24.70	110.00	124.5	852	1.82%	6.80	46.88	≥70
#5	0.625	16	0.31	199	0.32	0.47	41.8	186	135	930	1.5%	8.7	60.3	≥80
#6	0.750	19	0.44	284	0.47	0.70	57.3	255	130	898	1.5%	8.7	60.3	≥80
#7	0.875	22	0.60	387	0.63	0.94	78.3	348	131	900	1.5%	8.7	60.3	≥80
#8	1	25	0.79	510	0.82	1.2	101.9	453	129	889	1.5%	8.7	60.3	≥80

FIBER MASS CONTENT*	MOISTURE ABSORPTION IN 24 H at 50°C [122°F]*	MOISTURE ABSORPTION TO SATURATION AT 50°C [122°F]**	MEAN GL TRANSITI TEMPERA (DSC)*	ON	HORIZO	APPARENT T		SE ENGTH*	BOND STRENGTH	
%	%	%	°F	°C	psi	MPa	ksi	MPa	psi	MPa
≥80	≤0.2	<0.75	≥212	≥100	≥6525	≥45	≥22	≥152	≥1102	≥7.6

Handling & Placement

Handling and installation of PINKBAR®+ Fiberglas™ Rebar by OCIS is the same as for steel bars, with a few notes and exceptions:

- Cutting: Do not shear fiberglass bars. Field-cut fiberglass bars using a fine-blade saw, grinder, and carborundum or diamond blade. Sealing the ends of fiberglass bars is not necessary.
- · Chairing: Place chairs at a spacing that ensures adequate concrete cover.
- Tying: Use same tying methods as for steel rebar. Tie wire material based on contractor preference.
- · Concrete cover should be greater than two bar diameters to avoid thermal reflective cracking.
- · Can easily be field-formed into large radius curves. See web pages for minimum field bend radius.

As with any reinforcement placement, be sure to follow best practices in all phases of your concrete project, from planning to construction, including pouring, curing, joint cutting, and maintenance for optimal performance.

Packaging

PINKBAR®+ Fiberglas™ Rebar by OCIS ships from multiple locations in the U.S. Master bundles are available in standard sizes.

BAR SIZE	WEIGHT PER 20-FT BAR (lb)	NO. OF BARS PER MASTER BUNDLE	WEIGHT PER MASTER BUNDLE (lb)	NO. OF BARS IN A FULL TRUCK LOAD (FTL)	WEIGHT PER FTL (lb/ton)
#3	2.18	240	523	20,160	43892/22
#4	3.58	240	501	12,000	43056/22
#5	6.38	250	1595	6500	41470/21
#6	9.38	250	2345	4500	42210/21
#7	12.58	250	3145	3250	40885/20
#8	16 38	250	4095	2500	40950/20

Stock bent bars are available on request.

Labeling & Certificates

 $\label{lem:production} Production \ lot \ certificates \ are \ available \ upon \ request-traceable \ by \ bar \ marks \ imprinted \ on \ the \ bar \ in \ intervals \ showing \ the \ bar \ diameter, \ stock \ order, \ and \ production \ date.$

Storage

PINKBAR®+ Fiberglas™ Rebar by OCIS is durable in the outdoor environment. Discoloration, fading, or chalking of the surface can occur due to oxidation or UV exposure. However, this is cosmetic only and will not affect the performance of the bar. For prolonged exposure under direct sunlight, protective cover is recommended to minimize these effects.

INFRASTRUCTURE SOLUTIONS

Owens Corning Infrastructure Solutions, LLC

One Owens Corning Parkway Toledo, OH 43659 USA Ph: 1-855-OC-Rebar

www.owenscorning.com/pinkbar+

This information and data contained herein is offered solely as a guide in the selection of product. We believe this information to be reliable but do not guarantee its applicability to the user's process or assume any responsibility or liability arising out of its use or performance. The user agrees to be responsible for thoroughly testing any application of the product to determine its suitability. Because of numerous factors affecting results, we make no warranty of any kind, express or implied, including those of merchantability and fitness for a particular purpose. Statements in this publication shall not be construed as representations or warranties or as inducements to infringe on any patent or violate any law, safety code, or insurance regulation. We reserve the right to modify this document without prior notice.