THE REINFORCED CONCRETE DESIGN MANUAL

in Accordance with ACI 318-11

Anchoring to concrete

Publication:
SP-17(11)2

Editors:
Ronald Janowiak
Michael Kreger
Antonio Nanni
FOREWORD

The *Reinforced Concrete Design Manual* [SP-17(11)] is intended to provide guidance and assistance to professionals engaged in the design of cast-in-place reinforced concrete structures.

The first *Reinforced Concrete Design Manual* (formerly titled *ACI Design Handbook*) was developed in accordance with the design provisions of 1963 ACI 318 Building Code by ACI Committee 340, Design Aids for Building Codes, whose mission was to develop handbook editions in accordance with the ACI 318 Building Code. That committee published revised editions of the handbook in accordance with the 1971, 1977, 1983, and 1995 ACI 318 Building Codes. Many individuals and members of ACI Committee 340 contributed to the earlier editions of the handbook, which remains the basis for the current *Reinforced Concrete Design Manual*. Their contributions, as well as the administrative and technical assistance from ACI staff, are acknowledged. This earlier handbook format was a collection of design aids and illustrative examples, generated in the pre-calculator era. Many of these earlier design aids intended to carry out relatively simple design calculations were eliminated in the SP-17(09) edition. Explanatory text was added to each chapter, while maintaining relevant design aids and illustrative examples.

The 2012 edition of the *Reinforced Concrete Design Manual* [SP-17(11)] was developed in accordance with the design provisions of ACI 318-11, and is consistent with the format of SP-17(09). Chapters 1 through 6 were developed by individual authors, as indicated on the first page of those chapters, and updated to the content of ACI 318-11 as needed. Those authors were members of the former ACI Committee 340. SP-17(09) was reviewed and approved by ACI’s Technical Activities Committee (TAC).

Three new chapters were developed by ACI staff engineers under the auspices of TAC for SP-17(11): Chapter 7 (Deflection); Chapter 8 (Strut-and-Tie Model); and Chapter 9 (Anchoring to Concrete). To provide immediate oversight and guidance for this project, TAC appointed three content editors: Ronald Janowiak, Michael Kreger, and Antonio Nanni. Their reviews and suggestions improved this publication and are appreciated. TAC also appreciates the comments provided by Ronald Cook, Catherine French, Gary Klein, and John Silva for Chapters 8 and 9.

SP-17(11) is published in two volumes: Chapters 1 through 8 are published in Volume 1 and Chapter 9 is published in Volume 2.

Khaled Nahlawi
Managing Editor
On the cover:

Photo courtesy of University of Wisconsin-Milwaukee.
Chapter 9—Anchoring to concrete

9.1—Introduction...3

9.2—Materials ...3

9.3—Design assumptions ..3

9.4—Loads on anchors..4
 9.4.1—Tension ..4
 9.4.2—Shear ...5
 9.4.3—Interaction ..5

9.5—Discussion on anchors resisting tension ...5
 9.5.1—Steel strength ...5
 9.5.2—Concrete breakout strength ..6
 9.5.3—Pullout strength ...6
 9.5.4—Concrete side-face blowout strength ...6
 9.5.5—Bond strength of adhesive anchor ...6

9.6—Discussion on anchors resisting shear ...6
 9.6.1—Steel strength ...6
 9.6.2—Concrete breakout strength ..6
 9.6.3—Concrete pryout strength ..6
 9.6.4—Shear parallel to the edge ...6
 9.6.5—Shear strength at a corner ..6

9.7—Limitations on installation geometry ..7

References ...7

9.8—Anchorage examples ...8
 Anchorage Example 1: Baseplate anchors not subjected to shear force or tension ..8
 Anchorage Example 2: Cast-in headed anchor in Seismic Design Category D, subjected to tension only10

ACI Committee Reports, Guides, Manuals, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.

ACI SP-17(11) supersedes ACI SP-17(09) and was adopted and published August 2012. Copyright © 2012, American Concrete Institute. All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
Anchorage Example 3: Post-installed expansion anchor in Seismic Design Category B, subjected to tension force only 16
Anchorage Example 4: Post-installed adhesive anchor in Seismic Design Category B, subjected to tension force only 21
Anchorage Example 5: Cast-in headed anchor in Seismic Design Category A, subjected to shear 28
Anchorage Example 6: Post-installed expansion anchor in Seismic Design Category A, subjected to shear 34
Anchorage Example 7: Post-installed adhesive anchor in Seismic Design Category A, subjected to shear 40
Anchorage Example 8: Cast-in hex-headed anchor in Seismic Design Category A, resisting tension and shear forces 47
Anchorage Example 9: Cast-in hooked anchor in Seismic Design Category A, resisting tension and shear forces 56
Anchorage Example 10: Post-installed expansion anchor in Seismic Design Category A, resisting tension and shear forces .. 66
Anchorage Example 11: Post-installed adhesive anchor in Seismic Design Category A, resisting tension and shear forces .. 75
Anchorage Example 12: Group of cast-in studs in Seismic Design Category A, resisting a concentric tensile force 86
Anchorage Example 13: Group of post-installed adhesive anchors in Seismic Design Category A, resisting a concentric tensile force .. 92
Anchorage Example 14: Cast-in group of studs subjected to shear force and moment .. 99
Anchorage Example 15: Post-installed adhesive group of anchors subjected to shear and moment 110
Anchorage Example 16: Cast-in studs resisting tension force applied eccentrically to the two axes of symmetry 122
Anchorage Example 17: Post-installed adhesive anchors resisting tension force having double eccentricity 131
Anchorage Example 18: Cast-in column anchors resisting tension and shear forces .. 140
Anchorage Example 19: Post-installed adhesive column anchors resisting tension and shear forces 161

Tables .. 175
CHAPTER 9—ANCHORING TO CONCRETE

9.1—Introduction
Steel anchors, either cast in concrete or post-installed in hardened concrete, are used to transfer shear and tension forces to a concrete member. Cast-in anchors are usually headed studs, headed bolts, hooked bolts, or threaded rods with nuts. Post-installed anchors include undercut, expansion, and adhesive anchors. Appendix D of ACI 318 is used for the design of anchors in concrete for two main applications: (a) connections between structural members; and (b) attachments of nonstructural, safety-related elements to a structural member.

Cast-in anchors are placed into the formwork before concrete placement.

Advantages are:
• Anchors may be accurately placed with respect to reinforcing bars
• Many anchor sizes, configurations, and lengths are possible
Disadvantages are:
• Anchors that are not adequately held in place may shift from their intended location during the placement of concrete
• Anchors may be affected by poor concrete consolidation
• Anchors cannot be moved after concrete is placed
• Anchors in walls and the bottom of slabs require penetrations in the formwork.

Post-installed anchors are installed into drilled holes after concrete has hardened. Post-installed anchors transmit loads to the concrete by friction, bearing, bond, or a combination of these mechanisms.

Advantages are:
• Anchors may be accurately placed with respect to attached components
• Avoids formwork penetrations
Disadvantages are:
• Anchor location with respect to reinforcing bars is usually uncertain, and drilling anchor holes may damage reinforcement
• Post-installed anchors generally have lesser design strength than cast-in anchors with equal embedment depth and diameter
• Inspection requirements for post-installed anchors may be greater than for cast-in anchors.

9.2—Materials
Anchor design strength is influenced by both the steel anchor characteristics (yield strength, ductility, diameter, embedment length) and the member’s specified concrete strength.

All types of steels are allowed, but there is approximately 10 to 15% design strength reduction for using less ductile steel. Anchor steel is considered ductile if the tensile elongation as measured in accordance with ASTM F606 is at least 14% with a reduction in area of at least 30%. Some steels, such as A307 bolts and A615 reinforcing bars, are deemed to meet this requirement without testing. A restriction on the maximum ratio of tensile strength to yield strength is imposed to prevent yielding of anchors at service load levels (see D.5.1.2). If the anchor resists significant seismic forces, other restrictions—for example, on the ratio of tensile ultimate to yield strength—may apply (see D.3.3.4.3).

Cast-in anchors do not have embedment depth limits, but post-installed adhesive anchor embedment depths are limited to $4d_a \leq h_{ef} \leq 20d_a$ (see Table 9(a)).

For anchor diameters larger than 4 in., testing is required.

Post-installed mechanical anchors and post-installed adhesive anchors are qualified by testing in accordance with ACI 355.21 and ACI 355.42, respectively.

For calculation purposes, the concrete strength f'_c cannot exceed 10,000 psi for cast-in anchors or 8000 psi for post-installed anchors. For concrete compressive strengths beyond these limits, testing is required. There is a reduction factor λ_a for lightweight concrete.

9.3—Design assumptions
ACI 318 Appendix D assumptions to calculate anchor forces include:

1. Loads are applied through a base plate to individual anchors
2. Anchor reactions are usually calculated by either (a) or (b):
 (a) elastic analysis by varying the anchor reactions linearly with distance from axis of rotation
 (b) inelastic analysis by force redistribution among ductile anchors
3. Friction between the base plate and the concrete is ignored
4. Anchor tension strength is unaffected by the presence of an adjacent compression field

ACI 318 Appendix D design assumptions include:

5. Cracked concrete members have sufficient reinforcement to restrain cracking to acceptable widths under design loads
6. Anchors in a group are of a similar type, size, and depth
7. In buildings subject to earthquake forces, anchors are not located in plastic hinge zones

To evaluate a preliminary design, consider:

1. The location of anchors relative to each other, to the base plate edges, and to the edge of concrete
2. The anchor type (cast-in, mechanical post-installed, adhesive)

<table>
<thead>
<tr>
<th>d_a</th>
<th>1/4</th>
<th>3/8</th>
<th>1/2</th>
<th>5/8</th>
<th>7/8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min $4d_a$</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Max $20d_a$</td>
<td>5.0</td>
<td>7.5</td>
<td>10.0</td>
<td>12.5</td>
<td>17.5</td>
<td>20.0</td>
</tr>
</tbody>
</table>