An ACI Technical Publication

Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16)

SP-360

Editors: Ayman M. Okeil, Pedram Sadeghian, John J. Myers, and Maria D. Lopez

American Concrete Institute Always advancing

Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16)

> Sponsored by ACI Committee 440

ACI Concrete Convention March 24-28, 2024 New Orleans, LA

Editors: Ayman M. Okeil, Pedram Sadeghian, John J. Myers, and Maria D. Lopez

American Concrete Institute Always advancing

SP-360

First printing, March 2024

Discussion is welcomed for all materials published in this issue and will appear ten months from this journal's date if the discussion is received within four months of the paper's print publication. Discussion of material received after specified dates will be considered individually for publication or private response. ACI Standards published in ACI Journals for public comment have discussion due dates printed with the Standard.

The Institute is not responsible for the statements or opinions expressed in its publications. Institute publications are not able to, nor intended to, supplant individual training, responsibility, or judgment of the user, or the supplier, of the information presented.

The papers in this volume have been reviewed under Institute publication procedures by individuals expert in the subject areas of the papers.

Copyright © 2024 AMERICAN CONCRETE INSTITUTE 38800 Country Club Dr. Farmington Hills, Michigan 48331

All rights reserved, including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by any electronic or mechanical device, printed or written or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.

Printed in the United States of America

Editorial production: Gail Tatum

ISBN-13: 978-1-64195-243-9

Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16)

The 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16) was organized by ACI Committee 440 (Fiber-Reinforced Polymer Reinforcement) and held on March 23 and 24, 2024, at the ACI Spring 2024 Convention in New Orleans, LA. FRPRCS-16 gathers researchers, practitioners, owners, and manufacturers from the United States and abroad, involved in the use of FRPs as reinforcement for concrete and masonry structures, both for new construction and for strengthening and rehabilitation of existing structures.

FRPRCS is the longest running conference series on the application of FRP in civil construction, commencing in Vancouver, BC, in 1993. FRPRCS has been one of the two official conference series of the International Institute for FRP in Construction (IIFC) since 2018 (the other is the CICE series). These conference series rotate between Europe, Asia, and the Americas, with alternating years between CICE and FRPRCS. The ACI convention has previously cosponsored the FRPRCS symposium in Anaheim (2017), Tampa (2011), Kansas City (2005), and Baltimore (1999).

This Special Publication contains a total of 52 peer-reviewed technical manuscripts from 20 different countries from around the world. Papers are organized in the following topics: (1) FRP Bond and Anchorage in Concrete Structures; (2) Strengthening of Concrete Structures using FRP Systems; (3) FRP Materials, Properties, Tests and Standards; (4) Emerging FRP Systems and Successful Project Applications; (5) FRP-Reinforced Concrete Structures; (6) Advances in FRP Applications in Masonry Structures; (7) Seismic Resistance of FRP-Reinforced/Strengthened Concrete Structures; (8) Behavior of Prestressed Concrete Structures; (9) FRP Use in column Applications; (10) Effect of Extreme Events on FRP-Reinforced/Strengthened Structures; (11) Durability of FRP Systems; and (12) Advanced Analysis of FRP Reinforced Concrete Structures.

The breadth and depth of the knowledge presented in these papers is clear evidence of the maturity of the field of composite materials in civil infrastructure. The ACI Committee 440 is witness to this evolution, with its first published ACI CODE-440.11, "Building Code Requirements for Structural Concrete with Glass Fiber Reinforced Polymer (CFRP) Bars," published in 2022. A second code document on fiber reinforced polymer for repair and rehabilitation of concrete is under development.

The publication of the sixteenth volume in the symposium series could not have occurred without the support and dedication of many individuals. The editors would like to recognize the authors who diligently submitted their original papers; the reviewers, many of them members of ACI Committee 440, who provided critical review and direction to improve these papers; ACI editorial staff who guided the publication process; and the support of the American Concrete Institute (ACI) and the International Institute for FRP in Construction (IIFC) during the many months of preparation for the Symposium.

Ayman M. Okeil, Pedram Sadeghian, John J. Myers, and Maria D. Lopez Co-editors

TABLE OF CONTENTS

TOPIC: FRP Bond and Anchorage in Concrete Structures

SP-360-1: Proposed Design Method for EB-FRP Ties Debond Strain Encompassing Short/Long and Thin/Thick Ties
SP-360-2: Review and Analysis of FRP Bond Lengths from Pull-out Testing Database with Reduced Embedment Lengths
SP-360-3: Evaluation of the Bond Performance of Concrete-Epoxy Interface Using Segmentation-Based Image Processing Techniques
SP-360-4: Behavior of Partially Bonded GFRP-Reinforced Concrete Beams
SP-360-5: Bond Performance of CFRP-Concrete Joints Subjected to Freeze-Thaw Cycles: Experimental Study and Analytical Analysis
SP-360-6: Model Uncertainty in Reliability Analysis of FRP-to-Concrete Bond with Grooves
SP-360-7: Fracture Energy of GFRP-Concrete Bonded Interface after Sustained Loading in Natural Environments
SP-360-8: Data-Driven Prediction of The Bond Coefficient Between Fibre-Reinforced Polymer (FRP) Bars and Concrete106-121 Authors: Nadia Nassif, M. Talha Junaid, Salah Altoubat, Mohamed Maalej, and Samer Barakat

TOPIC: Strengthening of Concrete Structures using FRP Systems

SP-360-9:

Effectiveness of Using Dowelled GFRP Bars to Repair Reinforced Concrete Bridge Barriers 122-140 Authors: Juan Torres Acosta and Douglas Tomlinson

SP-360-10:

A New Bond Model for RC Beams Strengthened with Embedded Through-Section Method 141-155 Authors: Sara Mirzabagheri, Andrew Kevin, Kenneth Doyle, Amir Mofidi, and Omar Chaallal

SP-360-11:

SP-360-12:

Assessment of the Existing Shear Resistance Models for RC Beams Strengthened with	
Near Surface-Mounted FRP Reinforcement	179-193
Authors: Amirhossein Mohammadi, Joaquim A.O. Barros, José Sena-Cruz, and Salvador J.E.	Dias

TOPIC: FRP Materials: Properties, Tests and Standards

SP-360-13:

Physical and Mechanical Properties of Helical Wrap GFRP Bars for Reinforcing Concrete Structures
SP-360-14: Interface Shear Transfer Mechanism with GFRP Bars Reinforcement
SP-360-15: An Effective Simple Fixture for Testing GFRP Rebars in Compression
SP-360-16: Exploring Strength of Straight and Bent GFRP Bars: Refinements to CSA S807:19 Annex E 242-253 Authors: Ahmed Khalil, Rami A. Hawileh, and Mousa Attom
SP-360-17: Convertible Bond Test Apparatus for EB FRP, NSM FRP, FRCM, and Allied Systems: Proof of Concept
TOPIC: Emerging FRP Systems and Successful Project Applications

SP-360-18:

Numerical Design Optimization of a New Hybrid-Utility Pole	274-289
Authors: Mohamed Bouabidi, Slimane Metiche, and Radhouane Masmoudi	

SP-360-19:

A Novel VOC-Free Epoxy System for High Modulus Glass Fiber Reinforced Polymer Rebar.....290-298 Authors: Huifeng Qian and Wendell Harriman II

SP-360-20:

Monitoring of RC Beams Using Smart FRP Bonded Material	299-317
Authors: Emmanuel Ferrier, Laurent Michel, and Andrea Armonico	

TOPIC: FRP-Reinforced Concrete Structures SP-360-21: Authors: Jesús D. Ortiz, Zahid Hussain, Seyed-Arman Hosseini, Brahim Benmokrane, and Antonio Nanni SP-360-22: Authors: Stephanie L. Walkup, Eric S. Musselman, Shawn P. Gross, and Hannah Kalamarides SP-360-23: Structural and Deformational Behavior of Flexural Concrete Beams Reinforced with GFRP Authors: Raphael Kampmann, Tim Rauert, Niklas Pelka, and Bastian Franzenburg SP-360-24: Open Issues on the Structural Performances of Concrete Beams Reinforced with Authors: Maria Antonietta Aiello and Luciano Ombres **TOPIC:** Advances in FRP Applications in Masonry Structures SP-360-25: Authors: Francesca Ceroni, Alberto Balsamo, and Marco Di Ludovico SP-360-26: Authors: Marta Del Zoppo, Marco Di Ludovico, Alberto Balsamo, and Andrea Prota SP-360-27: Authors: Alessio Cascardi, Salvatore Verre, and Luciano Ombres SP-360-28: Authors: F. Ferretti, A. R. Tilocca, A. Incerti, S. Barattucci, and M. Savoia **TOPIC: Seismic Resistance of FRP-Reinforced/Strengthened Concrete Structures** SP-360-29: Modeling Cyclic Response of CFRP Strengthened Fiber Anchored RC Frame Authors: Salman Alshamrani, Sama Mohammed Saleem, Hayder A. Rasheed, and Fahed H. Salahat SP-360-30: A Comparative Analysis of GFRP- and Steel-RC Columns under Combined Shear, Authors: Yasser M. Selmy and Ehab F. El-Salakawy

SP-360-31:

Seismic Strengthening of RC Beam-Column Joints with FRP Systems Applicable from	400 470
the Exterior of the Building	462-473
Authors: Ciro Dei vecchio, Marco Di Ludovico, Alberto Baisamo, and Andrea Prota	
SP-360-32:	
Numerical Investigation and Experimental Plan on Seismic Performance of Carbon	
Fiber-Reinforced Polymer-Reinforced Concrete Columns	474-490
Authors: Chaoran Liu, Ligang Qi, Ying Zhou, Guowen Xu, Yan Yang, Zhiheng Li, and Yiq	iu Lu
TOPIC: Behavior and Design of Prestressed Concrete Structures	
SP-360-33:	
Deflection Behavior of Beams Prestressed with Bonded FRP Tendons	
Authors: Wassim Nasreddine, Peter H. Bischoff, and Hani Nassif	
SP-360-34:	
Flexural Behavior of Concrete Beams Prestressed with Hybrid Tendons	511-529
Authors: Adi Obeidah and Hani Nassif	
SP-360-35:	
Application of FRP in the Rehabilitation of Prestressed Concrete Girder Bridges	530-547
Authors: Ramin Rameshni, Reza Sadjadi, and Melanie Knowles	
SP-360-36:	
The Performance of Prestressed Carbon Fibre Reinforced Polymer (CFRP) Bridge Tendon	S
after 18 Years in Service	548-562
Authors: Alexandra Boloux, Luke Bisby, Valentin Ott, and Giovanni P. Terrasi	
TOPIC: FRP Use in Column Applications	
SP-360-37:	
Biaxial Interaction Diagrams of Elliptical Concrete Column Sections Reinforced	
with GFRP Bars	563-581
Authors: Ahmad Ghadban and Hayder A. Rasheed	
SP-360-38:	
Stress-Strain Model of Concrete Confined by FRP Laminate and Spike Anchors	582-601
Authors: Zhibin Li, Enrique del Rey Castillo, Richard S. Henry, Kent A. Harries, and Tong	yue Zhang
SP-360-39:	
Failure Characterization of GFRP-Reinforced Concrete Walls	602-611
Authors: Ju-Hyung Kim and Yail J. Kim	
TOPIC: Effects of Extreme Events on FRP-Reinforced/Strengthened Stru	uctures
SP-360-40:	
Experimental Assessment of Large-Scale FRP-Strengthened RC Shear Controlled	
Walls Subjected to Cyclic Loads	612-627
Authors: Lin S-H, Kim I, Borwankar A, Kanitkar R, Hagen G, and Shapack G	

SP-360-41:

Evaluation of Hysteretic Energy and Damping Capacity of GFRP-RC Columns Under Cyclic Loading	628-647
Authors: Yasser M. Selmy, Amr E. Abdallah, and Ehab F. El-Salakawy	
SP-360-42: PBO FRCM Composite System Exposed to Elevated Temperatures: Experimental and Theoretical Investigations Authors: Luciano Ombres, Pietro Mazzuca, Alfredo Micieli, and Francesco Campolongo	. 648-662
SP-360-43: Seismic Performance of Concrete Beam-Column Joints Reinforced with Carbon Fiber-Reinforced Polymer (CFRP) Bars and Stirrups Authors: Ligang Qi, Guohua Cen, Chaoran Liu, Ying Zhou, Guowen Xu, Yan Yang, Zhiheng Li, and Yiqiu Lu	663-677
TOPIC: Durability of FRP Systems	
SP-360-44: Freeze-Thaw Durability of GFRP and BFRP Rebars Authors: Raphael Kampmann, Carolin Martens, Srichand Telikapalli, and Alvaro Ruiz Empa	678-690 ranza
SP-360-45: Assessment of Crack Spacing and Crack Width Formulations in RC Elements Externally Strengthened with FRP Materials Authors: Francesca Ceroni, Cristina Barris, and Alejandro Perez Caldentey	691-708
SP-360-46: Quasi-Static and Fatigue Behavior of GFRP Bars Embedded in Concrete: A Comparison Between Pull-Out Tests and Flexural Tests of Slabs Authors: Charles Tucker Cope III, Mohammod Minhajur Rahman, Francesco Focacci, Tommaso D'Antino, Iman Abavisani, and Christian Carloni	709-728
SP-360-47: Fatigue Performance of Real-Scale Precast GFRP Reinforced Lightweight Concrete Arches Authors: Bartosz Piątek and Tomasz Siwowski	729-743
SP-360-48: Fatigue Behavior of CFRP Sheets Attached to Concrete Surface by Using EBROG Strengthening Method Authors: Mehdi Khorasani, Giovanni Muciaccia, and Davood Mostofinejad	744-758
TOPIC: Advanced Analysis of FRP Reinforced Concrete Structures	
SP-360-49: Analysis of Concrete Deep Beams with Fibre-Reinforced Polymer (FRP)	

Analysis of Concrete Deep Beams with Fibre-Reinforced Polymer (FRP)	
Bars by Indeterminate Strut-and-Tie (IST) Method	.759-770
Authors: Shuqing Liu and Maria Anna Polak	

SP-360-50:

Effect of Weathering Exposure Time on the Flexural Behavior of FRP Strengthened RC Beams	90
Authors: Haitham A. Ibrahim, Mohamed F. M. Fahmy, and Seyed Saman Khedmatgozar Dolati	
SP-360-51: Finite Element Analysis of the Interface between FRP and Concrete	23
SP-360-52: A Review of Strut-and-Tie Models for FRP Reinforced Deep Beams	14

SP-360: Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16)

Proposed Design Method for EB-FRP Ties Debond Strain Encompassing Short/Long and Thin/Thick Ties

Junrui Zhang, Enrique del Rey Castillo, Ravi Kanitkar, Aniket D Borwankar, and Ramprasath R

Synopsis: A systematic literature review was conducted on pure tension strengthening of concrete structures using fiber-reinforced polymer (FRP), specifically for larger FRP tie applications. This work yielded a dataset of 1,627 direct tension tests, and highlighted the limitation of existing studies on studying thick and long FRP ties, which are typical in real construction scenarios. To overcome this shortcoming, 51 single lap shear tests were conducted on thicker and longer FRP ties, with the dimensions being 0.5 to 6 mm [0.02 to 0.24 in.] thickness, and 300 to 1,524 mm [12 to 60 in.] long. The critical parameters under consideration were concrete compressive strength, FRP thickness, and bond length. The findings demonstrate that thicker and therefore stiffer FRP ties have higher debond force capacity, while longer ties exhibit greater post-elastic deformation capacity but do not affect the debond force capacity. Concrete had a limited effect on either debond force or deformation capacity. A strength model is proposed for FRP systems under axial pure tension, which aligns well with both the published and tested results. This paper focuses on the development of design guidelines and codes to predict the debond strain for EB-FRP systems incorporating thicker and longer FRP ties, aiming to enhance the applicability of FRP to real-world construction scenarios.

Keywords: Externally bonded reinforcement (EBR), Fiber reinforced polymer (FRP), Reinforced concrete (RC), Interfacial bond behavior, Cohesive debonding, Single-lap shear test.

SP-360: Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16)

ACI student member **Junrui Zhang** is currently enrolled at the University of Auckland as a PhD candidate working on 'Seismic strengthening of floor diaphragms with carbon fiber composite materials (CFRP) ties'. Before that, Junrui completed his M.Phil. project in Structural Engineering at Lanzhou University with distinction. In the same period, he participated in an exchange program at the Swanson School of Engineering at the University of Pittsburgh.

ACI member **Enrique del Rey Castillo** is currently working at the University of Auckland as a Senior Lecturer, where he teaches and investigates concrete materials, design, and structures. His research interests include seismic behaviour and strengthening of existing concrete structures, mostly with FRP, and sustainability of concrete.

ACI member Ravi Kanitkar is currently working at KL Structures

ACI member Aniket D Borwankar is currently working at Simpson Strong-Tie

ACI student member **Ramprasath R** has recently completed the undergraduate studies in Civil Engineering at NIT Trichy and will be joining Virginia tech for fall 2023 to pursue master's in structural engineering. Research interest focuses on seismic strengthening of concrete structures.

INTRODUCTION

Application of externally bonded fiber-reinforced polymer (EB-FRP) is a widely used technique for retrofitting and strengthening existing structures. This technique involves bonding Fiber-Reinforced Polymer (FRP) materials such as glass, carbon, or aramid with an epoxy matrix to the external surface of the concrete structure. EB-FRP can provide improved resistance to flexural [1, 2], shear [3], and tension forces [4, 5], making it suitable for reinforcing various components such as beams [6], columns [7], walls [8], and floor diaphragms [9, 10]. Fig. 1 illustrates a regular FRP-strengthened concrete block under single-lap shear tests. The force transfer mechanism between the FRP and the concrete is the bond stresses provided by the epoxy resin, with the failure typically being related to the fracture of a shallow layer of concrete when subjected to tension and/or shear forces. In other words, neither the resin nor the fibers typically fail. Thus, the failure strain of the EB-FRP system is often much lower than the fracture strain of the FRP, due to the low tensile capacity of concrete. Current published studies predominantly focused on thin (< 0.5 mm [0.02 in.]) and short (< 300 mm [12 in.]) FRP ties (aka sheets), which are often not representative of real in-situ construction scenarios where thick and long FRP ties are typically used. This shortcoming is reflected in commonly used design guidelines. For example, Section 12.4 of the ACI 440.2R-17 design guidelines [11] establishes that the FRP pure axial tension strengthening is calculated using the shear provisions, which typically have short lengths, while the effective bond length is calculated using the flexural provisions. Thus, more research on thick and long ties is necessary to the debond force and deformation behavior can be characterized and the design guidelines updated.