ACI SP-17(14)

THE REINFORCED CONCRETE DESIGN HANDBOOK

A Companion to *ACI 318-14*

<table>
<thead>
<tr>
<th>VOLUME 1</th>
<th>VOLUME 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDING EXAMPLE</td>
<td>RETAINING WALLS</td>
</tr>
<tr>
<td>STRUCTURAL SYSTEMS</td>
<td>SERVICEABILITY</td>
</tr>
<tr>
<td>STRUCTURAL ANALYSIS</td>
<td>STRUT-AND-TIE MODEL</td>
</tr>
<tr>
<td>DURABILITY</td>
<td>ANCHORING TO CONCRETE</td>
</tr>
<tr>
<td>ONE-WAY SLABS</td>
<td></td>
</tr>
<tr>
<td>TWO-WAY SLABS</td>
<td></td>
</tr>
<tr>
<td>BEAMS</td>
<td></td>
</tr>
<tr>
<td>DIAPHRAGMS</td>
<td></td>
</tr>
<tr>
<td>COLUMNS</td>
<td></td>
</tr>
<tr>
<td>STRUCTURAL REINFORCED CONCRETE WALLS</td>
<td></td>
</tr>
<tr>
<td>FOUNDATIONS</td>
<td></td>
</tr>
</tbody>
</table>
DEDICATION

This edition of *The Reinforced Concrete Design Handbook, SP-17(14)*, is dedicated to the memory of Daniel W. Falconer and his many contributions to the concrete industry. He was Managing Director of Engineering for the American Concrete Institute from 1998 until his death in July 2015.

Dan was instrumental in the reorganization of *Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)* as he served as ACI staff liaison to ACI Committee 318, Structural Concrete Building Code; and ACI Subcommittee 318-SC, Steering Committee. His vision was to simplify the use of the Code for practitioners and to illustrate the benefits of the reorganization with this major revision of *SP-17*. His oversight and review comments were instrumental in the development of this Handbook.

An ACI member since 1982, Dan served on ACI Committees 344, Circular Prestressed Concrete Structures, and 373, Circular Concrete Structures Prestressed with Circumferential Tendons. He was also a member of the American Society of Civil Engineers. Prior to joining ACI, Dan held several engineering and marketing positions with VSL Corp. Before that, he was Project Engineer for Skidmore, Owings, and Merrill in Washington, DC. He received his BS in civil engineering from the University of Buffalo, Buffalo, NY and his MS in civil and structural engineering from Lehigh University, Bethlehem, PA. He was a licensed professional engineer in several states.

In his personal life, Dan was an avid golfer, enjoying outings with his three brothers whenever possible. He was also an active member of Our Savior Lutheran Church in Hartland, MI, and a dedicated supporter and follower of the Michigan State Spartans basketball and football programs. Above all, Dan was known as a devoted family man dedicated to his wife of 33 years, Barbara, his children Mark, Elizabeth, Kathryn, and Jonathan, and two grandsons Samuel and Jacob.

In his memory, the ACI Foundation has established an educational memorial. For more information visit http://www.scholarshipcouncil.org/Student-Awards. Dan will be sorely missed for many years to come.
The Reinforced Concrete Design Handbook provides assistance to professionals engaged in the design of reinforced concrete buildings and related structures. This edition is a major revision that brings it up-to-date with the approach and provisions of Building Code Requirements for Structural Concrete (ACI 318-14). The layout and look of the Handbook have also been updated.

The Reinforced Concrete Design Handbook now provides dozens of design examples of various reinforced concrete members, such as one- and two-way slabs, beams, columns, walls, diaphragms, footings, and retaining walls. For consistency, many of the numerical examples are based on a fictitious seven-story reinforced concrete building. There are also many additional design examples not related to the design of the members in the seven story building that illustrate various ACI 318-14 requirements.

Each example starts with a problem statement, then provides a design solution in a three column format—code provision reference, short discussion, and design calculations—followed by a drawing of reinforcing details, and finally a conclusion elaborating on a certain condition or comparing results of similar problem solutions.

In addition to examples, almost all chapters in the Reinforced Concrete Design Handbook contain a general discussion of the related ACI 318-14 chapter.

All chapters were developed by ACI staff engineers under the auspices of the ACI Technical Activities Committee (TAC). To provide immediate oversight and guidance for this project, TAC appointed three content editors: Andrew Taylor, Trey Hamilton III, and Antonio Nanni. Their reviews and suggestions improved this publication and are appreciated. TAC also appreciates the support of Dirk Bondy and Kenneth Bondy who provided free software to analyze and design the post-tensioned beam example, in addition to valuable comments and suggestions. Thanks also go to JoAnn Browning, David DeValve, Anindya Dutta, Charles Dolan, Matthew Huslig, Ronald Klemencic, James Lai, Steven McCabe, Mike Mota, Hani Nassif, Jose Pincheira, David Rogowski, and Siamak Sattar, who reviewed one or more of the chapters.

Special thanks go to StructurePoint and Computers and Structures, Inc. (SAP 2000 and Etabs) for providing a free copy of their software to perform analyses of structure and members.

Special thanks also go to Stuart Nielsen, who provided the cover art using SketchUp.

The Reinforced Concrete Design Handbook is published in two volumes: Chapters 1 through 11 are published in Volume 1 and Chapters 12 through 15 are published in Volume 2. Design aids and a moment interaction diagram Excel spreadsheet are available for free download from the following ACI webpage links:

Keywords: anchoring to concrete; beams; columns; cracking; deflection; diaphragm; durability; flexural strength; footings; frames; piles; pile caps; post-tensioning; punching shear; retaining wall; shear strength; seismic; slabs; splicing; stiffness; structural analysis; structural systems; strut-and-tie; walls.

Khaled Nahlawi
Managing Editor
CHAPTER 1—BUILDING EXAMPLE

1.1—Introduction
The building depicted in this chapter was developed to show how, by various examples in this Handbook, to design and detail a common concrete building according to ACI 318-14. This example building is seven stories above ground and has a one story basement. The building has evenly spaced columns along the grid lines. One column has been removed along Grid C on the second level so that there is open space for the lobby. The building dimensions are:
- Width (north/south) = 72 ft (5 bays @ 14 ft)
- Length (east/west) = 218 ft (6 bays @ 36 ft)
- Height (above ground) = 92 ft
- Basement height = 10 ft

The basement is used for storage, building services and mechanical equipment. It is ten feet high and has an extra column added in every bay along Grids A through F to support a two-way slab at the second level. There are basement walls at the perimeter.

The structural system is an ordinary concrete shear wall in the north/south direction and an ordinary concrete moment frame in east/west direction. These basic systems were chosen as a starting point for the examples. Member examples may be expanded to show how they may be designed in intermediate or special systems but a new structural analysis is not done. The following analysis results provide the moments, shears, and axial loads given in the examples in other chapters in the manual. Those examples may modify this initial data to demonstrate some specific code requirement.

1.2—Building plans and elevation
The following building plans and elevation provide the illustration of the example building.