

The Low-Carbon Concrete Guide: Materials

Mary Christiansen, Ph.D., LEED AP

Executive Director

Kerry Sutton, PE, LEED AP

NEU Staff

Sureka Sumanasooriya, Ph.D. Mahmut Ekenel, Ph.D., PE, FACI Kelly Dudley Kari Moosmann

Manager, ACI Publishing Services

Ryan M. Jay

Editing

Erin N. Azzopardi Lauren C. Brown Kaitlyn J. Dobberteen Tiesha Elam Kelli R. Slayden

Design

Kelli R. Slayden

Production

Kaitlyn J. Dobberteen Susan K. Esper Kelli R. Slayden

Cover Design

Lindsay Chelf Advancing Organizational Excellence

NEU: An ACI Center of Excellence for Carbon Neutral Concrete is not responsible for the statements or opinions expressed in its publications. NEU publications are not able to, nor intended to, supplant individual training, responsibility, or judgment of the user, or the supplier, of the information presented.

NEU: An ACI Center of Excellence for Carbon Neutral Concrete

38800 Country Club Dr. Farmington Hills, MI 48331 248-848-3780 info@neuconcrete.org

All rights reserved, including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by any electronic or mechanical device, printed or written or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.

First Edition, First Printing November 2025 Copyright © 2025, American Concrete Institute. ISBN: 979-8-218-85914-5 **Dr. Mary Christiansen** is an Associate Professor in the Department of Civil and Environmental Engineering at the University of Minnesota Duluth. She earned her BS and MS degrees in Architectural and Structural Engineering from the Milwaukee School of Engineering in 2008 and her PhD in Civil Engineering from Michigan Technological University in 2013. Dr. Christiansen teaches courses in concrete materials, structural design, and sustainability. Her research focuses on the development and characterization of low-carbon concrete and high-performance materials aimed at improving the sustainability and resiliency of concrete infrastructure. She was the founding chair of ACI Committee 242, Alternative Cements, and is a member of ACI Committees 232, Fly Ash in Concrete, and 240, Pozzolans.

The author thanks Dr. Andrea Schokker, PE, LEED AP, and Dr. Charles Nmai, PE, M. ASCE, FACI, NEU Board of Directors president, for their thoughtful review and valuable feedback, which helped refine and improve the manuscript. All drawings were conceptualized by the author and produced by Kate McCabe, whose skill and creativity brought the ideas to life. Additional thanks are extended to everyone who generously contributed photographs and visual materials used throughout the book.

Author's note: The development of low-carbon concrete materials and technologies is advancing rapidly, with new products and approaches emerging across research and practice. This guide provides a snapshot of the field based on the best information currently available. Every effort has been made to capture the range of materials, technologies, and perspectives shaping low-carbon concrete and to present them as clearly and accurately as possible.

Variations in data availability and maturity across different technologies can make direct comparisons difficult, but the principles and context presented here are intended to serve as a foundation for interpreting and applying concepts in low-carbon concrete. This work is a living document and will be updated as new information and technologies emerge.

Contents

List of Abbreviations, p. 6

List of Chemical Formulas, p. 7

Oxides, p. 7

Major Portland Cement Phases and Gypsum

(Cement Chemist Notation), p. 7

Portland Cement Hydrates, p. 7

Alternative Cements, p. 8

Environmental/Emissions-Related Compounds, p. 8 Introduction, p. 9

Scope, p. 9

Document Organization, p. 10

Organizational Charts of the Materials Discussed in This Guide, p. 11

PART I: UNDERSTANDING THE CARBON FOOTPRINT OF CONCRETE, p. 15

Chapter 1: The Role of Concrete in Global Carbon Emissions, p. 16

- 1.1 The Carbon Footprint of Concrete, p. 18
- 1.1.1 Concrete Constituents and Their Contribution to Emissions, p. 18
- 1.1.2 Projected Growth and Future Portland Cement Demand, p. 20
- 1.2 Initiatives and Frameworks for Industry Decarbonization, p. 20
- 1.2.1 Paris Agreement, p. 21
- 1.2.2 Decarbonization Roadmaps and Initiatives, p. 22

Chapter 2: Traditionally Produced Portland Cement Concrete, p. 24

- 2.1 Manufacture of Portland Cement, p. 26
- 2.1.1 Raw Material Sourcing and Processing, p. 26
- 2.1.2 Preheating and Precalcination, p. 27
- 2.1.3 Rotary Kiln and Clinker Formation, p. 28
- 2.1.4 Carbon Emissions, p. 28
- 2.1.5 Portland Cement Types and Classifications, p. 28
- 2.2 Hydration of Portland Cement Concrete, p. 30
- 2.2.1 Main Phases in Clinker, p. 30
- 2.2.2 Hydration of Calcium Silicates, p. 31
- 2.2.3 Hydration of Aluminate and Aluminoferrite, p. 32
- 2.2.4 Hydration Products, p. 32
- 2.3 Microstructure of Portland Cement Concrete, p. 33
- 2.3.1 The Role of Water in Portland Cement Concrete, p. 33
- 2.3.2 Interfacial Transition Zone, p. 34
- 2.4 The Concrete Carbon Cycle, p. 34

Chapter 3: Life Cycle Carbon: Frameworks, Metrics, and Benchmarks, p. 36

- 3.1 Life Cycle Thinking, p. 38
- 3.11 Life Cycle Stages and Modules, p. 38
- 3.1.2 Embodied and Downstream Carbon, p. 38
- 3.1.3 Circular Design Principles, p. 39
- 3.2 Key Decision Levers for Low-Carbon Concrete, p. 40
- 3.2.1 Material Selection as a Carbon Lever, p. 40
- 3.2.2 Mixture Optimization as a Carbon Lever, p. 41
- 3.2.3 Structural Optimization as a Carbon Lever, p. 42
- 3.2.4 Construction Methods as a Carbon Lever, p. 43
- 3.3 Carbon Quantification Tools, p. 43
- 3.3.1 Life Cycle Assessments, p. 44
- 3.3.2 Environmental Product Declarations, p. 45
- 3.3.3 Product Category Rules, p. 46
- 3.3.4 Global Warming Potential and Variability in Reporting, p. 47
- 3.4 ACI 323 Low-Carbon Concrete Code & Benchmark Calculations, p. 50

Chapter 4: Material Selection Considerations, p. 52

- 4.1 Environmental Impact, p. 55
- 4.2 Performance, p. 55
- 4.2.1 Fresh Concrete Properties, p. 55
- 4.2.2 Hardened Concrete Properties, p. 55
- 4.2.3 Testing Limitations and the Need for Performance-Based Specifications, p. 58
- 4.2.4 Quality Assurance, Field Testing, and Feedback Loops, p. 60
- 4.3 Constructability, p. 61
- 4.4 Economic Impact, p. 62
- 4.5 Material Availability and Supply Chain, p. 63
- 4.6 Regulatory and Standards Compliance, p. 63
- 4.7 Social Impact, p. 64

PART II: EXPLORING LOW-CARBON ALTERNATIVES TO PORTLAND CEMENT, p. 67

Chapter 5: Strategies for Reducing the Carbon Footprint of the Binder, p. 68

- 5.1 Use SCMs or Mineral Fillers at Batching, p. 72
- 5.2 Specify Lower-Carbon Portland and Blended Cements . p. 73
- 5.2.1 Lower-Carbon Portland Cement, p. 73
- 5.2.2 Blended Cements, p. 73
- 5.3 Adopt Alternative Cements, p. 74

3

Chapter 6: Supplementary Cementitious		8.1.2	Thermal Energy Efficiency and Alternative Fuels, p. 141
	rials, p. 76	8.1.3	Electrical Efficiency and Renewable
6.1	Carbon Reduction from SCM Use, p. 78	0.1.5	Electricity, p. 143
6.1.1	Embodied Carbon Reduction, p. 78	8.1.4	Carbon Capture, Utilization, and Storage,
6.1.2	Downstream Carbon Savings, p. 79	0.1.4	p. 144
6.2	Classification of SCMs by Origin, p. 81	8.2	Blended Cements, p. 149
6.3	Characterization and Behavior of SCMs, p. 82	8.2.1	Classification of Blended Cements, p. 150
6.3.1	Specifications and Test Methods, p. 82	8.2.2	Portland Limestone Cement (PLC), p. 151
6.3.2	Variability in SCM Properties and	8.2.3	Limestone Calcined Clay Cement (LC ³),
	Performance, p. 82	0.2.3	p. 152
6.3.3	Chemical Composition and Reactions, p. 83		p. 132
6.3.4	Physical Properties of SCMs, p. 86	Chan	tor O. Alternative Coments in 154
6.3.5	Reactivity Testing, p. 87	_	ter 9: Alternative Cements, p. 154
6.4	Availability of SCMs, p. 88	9.1	Performance and Practical Considerations
6.5	Industrial Byproducts, p. 88	0.0	for Alternative Cements, p. 156
6.5.1	Fly Ash (Proven), p. 89	9.2	Classification of Alternative Cement Types,
6.5.2	Slag Cement (Proven), p. 92	0.7	p. 157
6.5.3	Silica Fume (Proven), p. 93	9.3	Hydraulic Alternative Cements, p. 157
6.5.4	Ground Glass Pozzolan (Emerging), p. 94	9.3.1	Calcium Aluminate Cement (Proven), p. 157
6.5.5	Harvested Ash (Emerging), p. 96	9.3.2	Belite-Ye'elimite-Ferrite Cements , p. 159
6.5.6	Coal Bottom Ash (Experimental), p. 97	9.3.3	Supersulfated Cement (Emerging), p. 161
6.5.7	Mining Tailings (Experimental), p. 97	9.3.4	Electrochemically-Processed Alternative
6.5.8	Concrete Washing Fines (Experimental), p. 98	0.7.5	Cement (Emerging), p. 161
6.5.9	CO ₂ Mineralized SCMs (Experimental), p. 98	9.3.5	Lime-Pozzolan Cement (Experimental), p. 161
6.5.10	Summary Table of Industrial Byproduct	9.3.6	Summary Table of Hydraulic Alternative
	SCMs, p. 99	0.4	Cements, p. 162
6.6	Natural Pozzolans, p. 102	9.4	Alkali-Activated Cements (AAC), p. 162
6.6.1	Calcined Clay & Shale SCMs, p. 103	9.4.1	Alkali-Activated Fly Ash Cement (Proven),
6.6.2	Volcanic Pozzolans, p. 107	0.40	p. 163
6.6.3	Siliceous Sedimentary Rocks, p. 116	9.4.2	Alkali-Activated Slag Cement (Proven), p. 164
6.7	Biomass Ashes, p. 118	9.4.3	Alkali-Activated Calcined Clay Cement
6.7.1	Rice Husk Ash (Proven), p. 119	0.4.4	(Emerging), p. 165
6.7.2	Sugarcane Bagasse Ash (Emerging), p. 120	9.4.4	Hybrid and Blended Alkali-Activated
6.7.3	Palm Oil Fuel Ash (Emerging), p. 121	0.45	Systems (Emerging), p. 165
6.7.4	Other Agricultural Waste Ashes	9.4.5	Other Alkali-Activated Precursors
	(Experimental), p. 122	0.46	(Experimental), p. 166
6.7.5	Summary Table of Biomass Ash SCMs, p. 123	9.4.6	Summary Table of Alkali-Activated
6.8	Ternary SCM Mixtures, p. 124	0.5	Alternative Cements, p. 166
		9.5 9.5.1	Magnesium-Based Cements, p. 167
Chapter 7: Mineral Fillers, p. 126			Reactive MgO Cement (Experimental), p. 168
-		9.5.2	Magnesium Silicate-Based Cement
7.1	Classification of Mineral Fillers, p. 128	0.5.7	(Experimental), p. 169
7.2	Ground Limestone (Proven), p. 129	9.5.3	Magnesium Phosphate Cement
7.3	Cement Kiln Dust (Emerging), p. 130	0 - 4	(Experimental), p. 169
7.4	Quartz Powder (Emerging), p. 130	9.5.4	Magnesium Oxychloride Cement
7.5	Red Mud (Experimental), p. 130	0.0	(Experimental), p. 169
7.6	Stone Fines (Experimental), p. 131	9.6	Carbonated Cements (CC), p. 169
7.7	CO ₂ Mineralized Mineral Fillers (Experimental),	9.6.1	Carbonated Reactive MgO Cement
	p. 131	0.00	(Experimental), p. 170
7.8	Biochar (Experimental), p. 131	9.6.2	Carbonated Magnesium Silicate-Based
7.9	Summary Table of Mineral Fillers, p. 133	0.07	Cement (Experimental), p. 171
		9.6.3	Carbonated Calcium Silicate Cement
Chan	ter 8: Plant-Level Innovations in	9.6.4	(Experimental), p. 171
			Biogenic and Microbially Induced Binder
	ucing Lower-Carbon Cements, p. 134		(Experimental), p. 171
2.1	Lower-Carbon Portland Cement in 136		

8.1.1

Alternative Raw Materials, p. 136

PART III: EXPLORING LOW-CARBON ALTERNATIVES TO NON-BINDER CONCRETE MATERIALS, p. 173

Chapter 10: Aggregates, p. 174

- 10.1 Traditional Aggregates, p. 176
- 10.1.1 Aggregate Properties as Baseline Metrics, p. 177
- 10.1.2 Carbon Source in Traditional Aggregate Use, p. 177
- 10.2 Challenges in Availability, Quality, and Alternatives, p. 179
- 10.3 Opportunities to Reduce Carbon Emissions in Aggregates, p. 180
- 10.4 Classification of Aggregates by Origin and Chapter Organization, p. 181
- 10.5 Recycled Aggregates, p. 182
- 10.5.1 Recycled Concrete Aggregate (Proven), p. 182
- 10.5.2 Glass Aggregate (Emerging), p. 183
- 10.5.3 Plastic Aggregate (Experimental), p. 185
- 10.5.4 Summary Table of Recycled Aggregates, p. 185
- 10.6 Industrial Byproduct Aggregates, p. 186
- 10.6.1 Blast Furnace Slag Aggregate (Proven), p. 186
- 10.6.2 Steel Slag Aggregate (Emerging), p. 187
- 10.6.3 Foundry Sand (Emerging), p. 187
- 10.6.4 Copper Slag Aggregate (Emerging), p. 188
- 10.6.5 Coal Bottom Ash (Experimental), p. 189
- 10.6.6 Boiler Slag (Experimental), p. 189
- 10.6.7 Summary Table of Industrial Byproduct Aggregates, p. 190
- 10.7 Carbon-Sequestering Aggregates, p. 191
- 10.7.1 CO₂ Mineralized Aggregates (Emerging), p. 191
- 10.7.2 Synthetic Carbonate Aggregates (Experimental), p. 191
- 10.7.3 Biochar-Infused Aggregates (Experimental), p. 192
- 10.7.4 Summary Table of CO₂ Mineralized Aggregates, p. 192

Chapter 11: Reinforcement, p. 194

- 11.1 Determinants of Reinforcement Carbon Intensity, p. 196
- 11.1.1 Production Route, p. 196
- 11.1.2 Supply Chain Variability, p. 197
- 11.1.3 Design and Specification Practices, p. 197
- 11.1.4 Durability and Life Cycle Considerations, p. 198
- 11.2 Classification of Reinforcement, p. 198
- 11.3 Steel Reinforcement Pathways for Carbon Reduction, p. 198
- 11.3.1 Low-Carbon Production Routes, p. 198
- 11.3.2 Structural Efficiency: Prestressing and High-Strength Grades, p. 201

- 11.3.3 Corrosion-Resistant Steel Reinforcement, p. 203
- 11.4 Fiber-Reinforced Polymers (FRPs) and Polymer Composites, p. 205
- 11.4.1 Glass Fiber-Reinforced Polymer (Emerging), p. 206
- 11.4.2 Carbon Fiber-Reinforced Polymer (Emerging), p. 207
- 11.4.3 Basalt Fiber-Reinforced Polymer (Emerging), p. 208
- 11.4.4 Textile Reinforcement (Experimental), p. 208
- 11.4.5 Recycled Polymer Fiber Composites (Experimental), p. 208
- 11.4.6 Summary Table of Fiber-Reinforced Polymers, p. 209
- 11.5 Discrete Fibers in Concrete, p. 209
- 11.5.1 Steel Fibers (Proven), p. 210
- 11.5.2 Synthetic Fibers (Proven), p. 210
- 11.5.3 Glass Fibers (Proven), p. 211
- 11.5.4 Summary Table of Fiber-Reinforced Polymers, p. 212
- 11.6 Bio-Based and Natural Reinforcement, p. 212
- 11.6.1 Natural Fiber-Reinforced Polymers (Experimental), p. 212
- 11.6.2 Hybrid Bio-Synthetic Composites (Experimental), p. 213
- 11.6.3 Discrete Natural Fibers (Experimental), p. 213
- 11.6.4 Engineered Bamboo Reinforcement (Experimental), p. 213

Chapter 12: Water in Concrete, p. 214

- 12.1 Where Water is Used in Concrete, p. 216
- 12.2 Reducing Water Demand in Mixing, p. 216
- 12.3 Alternative Water Sources, p. 217
- 12.4 Efficient Curing Techniques, p. 217
- 12.5 Water-Conscious Construction Practices, p. 218
- 12.6 CO₂ Mineralization of Process Water, p. 218

PART IV: ADVANCED DESIGN STRATEGIES FOR LOW-CARBON CONCRETE, p. 221

Chapter 13: Advanced Mixture Optimization for Low-Carbon Concrete, p. 222

- 13.1 Chemical Admixtures as Enablers of Low-Carbon Mixtures, p. 224
- 13.1.1 Water-Reducing, Set- and Strength-Controlling Admixtures, p. 225
- 13.1.2 Durability-Enhancing Admixtures, p. 227
- 13.1.3 Admixtures for Improving Construction-Efficiency and Reducing Waste, p. 229
- 13.1.4 Limitations and Considerations, p. 230

CONTENTS

- 13.2 Mixture Optimization Levers, p. 231
- 13.2.1 Lower Clinker Content in the Mixture Proportioning, p. 231
- 13.2.2 Reduce Total Paste Volume, p. 232
- 13.2.3 Design for Durability, p. 232
- 13.2.4 Improve Construction Efficiency, p. 233

Chapter 14: Advanced Concretes and Their Role in Low-Carbon Construction, p. 234

- 14.1 High-Performance Concretes (HPC), p. 236
- 14.1.1 High-Strength Concrete (HSC), p. 236
- 14.1.2 Ultra-High-Performance Concrete (UHPC), p. 237
- 14.1.3 Engineered Cementitious Composites (ECC), p. 238
- 14.1.4 Fiber-Reinforced Concrete (FRC), p. 239
- 14.2 Specialty Placement and Efficiency Concretes, p. 239

14.2.1 Self-Consolidating Concrete (SCC), p. 240

5

- 14.2.2 Shotcrete, p. 240
- 14.2.3 Roller-Compacted Concrete (RCC), p. 240
- 14.3 Environmental Function Concretes, p. 241
- 14.3.1 Pervious Concrete, p. 241
- 14.3.2 Lightweight Aggregate Concrete (LWAC), p. 242
- 14.3.3 3D-Printed Concrete, p. 242

Conclusion - Building the Future of Low-Carbon Concrete, p. 244

References, p. 248 ACI Codes and Specifications, p. 248 ASTM International, p. 248 AASHTO, p. 250 ISO, p. 250

EN, p. 250

LIST OF ABBREVIATIONS		DOE	Department of Energy
IL	Portland-limestone cement	DOT	Department of Transportation
IP	Portland-pozzolan cement	DRI-EAF	Direct reduced iron - electric arc
is	Portland-slag cement	E 4 E	furnace
IT	Portland-ternary cement	EAF	Electric arc furnace
AAC	Alkali-activated cement	ECC	Engineered cementitious composites
AACC	Alkali-activated calcined clay	EN	European Norm (European Standard)
AAFA	Alkali-activated fly ash	EP	Eutrophication potential
AAS	Alkali-activated slag	EPA	Environmental Protection Agency
AASHTO	American Association of State	EPD	Environmental product declaration
70.01110	Highway and Transportation Officials	f'c	Specified compressive strength of
AC	Alternative cement	FA	concrete, psi
ACA	American Cement Association	FAO	Fly ash
ACAA	American Coal Ash Association	FBE	Food and Agriculture Organization
ACBFS	Air-cooled blast furnace slag	FFI	Fusion-bonded epoxy
ACC	Accelerated carbon curing	FGD	Fossil fuel industry Flue gas desulfurization
ACI	American Concrete Institute	FHWA	~
ADP	Adiabatic depletion potential	FRC	Federal Highway Administration Fiber-reinforced concrete
AEA	Air-entraining agent	FRGA	
AHJ	Authority having jurisdiction	FRGA	Fine recycled glass aggregate
Al	Artificial intelligence	GCC	Fiber-reinforced polymer Ground calcium carbonate
AMF	Aggregate mineral filler	GCCA	
AP	Acidification potential	GCCA	Global Cement and Concrete
APC	Advanced process control	GE	Association
APC	Air pollution control	GFRP	E-glass ground glass pozzolan
ASR	Alkali-silica reaction		Glass fiber reinforced polymer
ASTM	ASTM International	GGBFS GGP	Ground granulated blast furnace slag
BCSA	Belitic calcium sulfoaluminate	GHG	Ground glass pozzolan Greenhouse emission
BET	Brunauer-Emmett-Teller	GPS	Global positioning system
BF-BOF	Blast furnace - basic oxygen furnace	GS GS	
BFRP	Basalt fiber reinforced polymer	GU	Soda-lime ground glass pozzolan General use
BFSA	Blast furnace slag aggregate	GWP	Global warming potential
BOF	Basic oxygen furnace	GWP100	Global warming potential over 100
BSE	Backscattered electrons	GVVF100	years
BYF	Belite-ye'elimite-ferrite	HCFC	Hydrochlorofluorocarbon
CAC	Calcium aluminate cement	HDPE	High-density polyethylene
CBA	Coal bottom ash	HE	High early strength
CC	Carbonated cement	HFC	Hydrofluorocarbon
CCR	Coal combustion residue	HPC	High-performance concrete
CCS	Carbon capture and storage	HPGR	High-pressure grinding roll
CCU	Carbon capture and utilization	HRWR	High-range water reducer
CCUS	Carbon capture, utilization, and	HS	High sulfate resistance
	storage	HSC	High-strength concrete
CEN	European Committee for	HVFA	High-volume fly ash
	Standardization	IBC	International building code
CFA	Coal fly ash	IEA	International Energy Association
CFC	Chlorofluorocarbon	IPCC	Intergovernmental Panel on Climate
CFRP	Carbon fiber reinforced polymer	• • •	Change
CIS	Commonwealth of Independent States	ISO	International Organization for
CKD	Cement kiln dust		Standardization
CLSM	Controlled Low-Strength Material	ITZ	Interfacial transition zone
COP	Conference of the parties	LA	Los Angeles
CRGA	Coarse recycled glass aggregate	LCA	Life cycle assessment
CSA	Calcium sulfoaluminate cement	LCC	Low-carbon concrete
CSA	Copper slag aggregate	LCCA	Life cycle cost analysis
DAC	Direct air capture	LC ³	Limestone calcined clay cement
DE	Diatomaceous Earth		

CONTENTS

LH	Low heat of hydration	SCC	Self-consolidated concrete
LOI	Loss on ignition	SCM	Supplementary cementitious material
LULUCF	Land use, land-use change, and	SEM	Scanning electron microscope
LOLOCI		SE	Secondary electron
1.3.4.7.4	forestry		· · · · · · · · · · · · · · · · · · ·
LWA	Lightweight aggregate	SF	Silica fume
MCP	Manual of Concrete Practice	SFA	Silica Fume Association
MEA	Monoethanolamine	SFRC	Steel fiber-reinforced concrete
MH	Moderate heat of hydration	SSA	Specific surface area
MICP	Microbiologically induced calcium	SSC	Super-sulfated cement
	carbonate precipitation	TGA	Thermogravimetric analysis
MK	Metakaolin	UFS	
			Used foundry sand
MOC	Magnesium oxychloride cement	UHPC	Ultra-high performance concrete
MOS	Magnesium oxy-sulfate cement	UNFCCC	
MPC	Magnesium phosphate cement		Convention on Climate Change
MS	Moderate sulfate resistance	VOC	Volatile organic compound
MSW	Municipal solid waste	WAP	Water absorbing polymer
NGO	Non-governmental organization	WBCSD	World Business Council for Sustainable
NIST	National Institute of Standards and	2002	Development
14151		WHR	•
NIMIC	Technology		Waste heat recovery
NMIC	National Minerals Information Center	XRD	X-ray diffraction
NP	Natural pozzolan	XRF	X-ray fluorescence
NR	Not reported		
NREL	National Renewable Energy Lab	LIST OF	CHEMICAL FORMULAS
NRMCA	National Ready-Mixed Concrete	LIST OF C	CHEMICAL FORMULAS
	Association		
NEU	An ACI Center of Excellence for	Oxides	
INLO	Carbon Neutral Concrete		A loursius and a loursius constant
000		Al_2O_3	Alumina, aluminum oxide
ODP	Ozone depletion potential	CaCO ₃	Calcium carbonate, calcite
PC	Portland cement	CaO	Calcia, calcium oxide, lime
PCA	Portland Cement Association	Fe ₂ O ₃	Iron oxide
PCC	Portland cement concrete	H_2°	Water
PCE	Polycarboxylate ether	K ₂ O	Potassium oxide
PCR	Product category rule	МgО	Magnesium oxide, magnesia, periclase
PE	Polyethylene	Na ₂ O	Sodium oxide
PET	Polyethylene terephthalate		Sodium oxide equivalent
PLC	Portland limestone cement	Na ₂ O _{eq}	
		SiO ₂	Silica, silicon dioxide
PM	Particulate matter	SO ₃	Sulfate
POCP	Photochemical ozone creation		
	potential	Major Por	tland Cement Phases and
POFA	Palm oil fuel ash	-	(Cement Chemist Notation)
PP	Polypropylene	• •	•
PRC	Polymer reinforced concrete	C_3A	Aluminate, tricalcium aluminate,
PSD	Particle size distribution		3CaO·Al ₂ O ₃
psi	Pounds per square inch	C_2S	Belite, dicalcium silicate, 2CaO·SiO ₂
PV	Photo-voltaic	C_3S	Alite, tricalcium silicate, 3CaO·SiO ₂
		C ₂ S C ₃ S C ₄ AF	Ferrite, tetracalcium aluminoferrite,
PVA	Polyvinyl alcohol	7	4CaO·Al ₂ O ₃ ·Fe ₂ O ₃
QA	Quality assurance	CH ₂	Calcium sulfate, gypsum, CaSO ₄ ·2H ₂ O
QC	Quality control	2 2	(set regulator)
RCA	Recycled concrete aggregates		(See regulator)
RDF	Refuse-derived fuel	Davidanal	Commont Headmater
RHA	Rice husk ash		Cement Hydrates
RMI	Rocky Mountain Institute	AFm	Monosulfate, C ₄ AH ₁₂ ,
S-LCA	Social life cycle assessment		4CaO·Al ₂ O ₃ ·SO ₃ ·12H ₂ O
		AFt	Ettringite, $C_6 A_3 H_{32}$,
SAI	Strength activity index		6CaO·Al ₂ O ₃ ·3SO ₃ ·32H ₂ O
SAP	Superabsorbent polymer	C_3AH_6	Hydrogarnet, 3CaO·Al ₂ O ₃ ·6H ₂ O
SCA	Slag Cement Association	C ₆ AFH ₁₂	Aluminoferrite hydrate,
SCBA	Sugarcane bagasse ash	6/11/12	6CaO·Al ₂ O ₂ ·Fe ₂ O ₂ ·12H ₂ O
			0000 A1203 1 6203 121 120

СН Calcium hydroxide, portlandite, $Mg_3Si_2O_5(OH)_4$ Serpentine M-Š-H Magnesium silicate hydrate Ca(OH)₂ C-S-H Calcium silicate hydrate, Na₂CO₂ Sodium carbonate Na₂SiO₃ 3CaO·SiO₂·8H₂O (variable Sodium silicate stoichiometry) NaŌH Sodium hydroxide Sodium aluminate silicate N-A-S-H hydrate

Alternative Cements

 ${\rm C_4A_3}$ Ye'elimite, 4CaO·3Al₂O₃·SO₃ Monocalcium aluminate CAH Calcium aluminate hydrate $CaMg(CO_3)_2$ Dolomite C-A-S-H Calcium aluminate silicate hydrate **KOH** Potassium hydroxide K₂SiO₂ Potassium silicate MgCO, Magnesite Mg(OH), Magnesium hydroxide, brucite

Mg₂SiO₄ Olivine

Environmental/Emissions-Related Compounds

CH, Methane CO₂ Carbon dioxide CO₂e Carbon dioxide equivalent N_2O Nitrous oxide ΝŌ Nitrogen oxides SF₆ Sulfur hexafluoride SO_{x} Sulfur oxides

Figure 1 Concrete arches along the Almería seawall in Spain. Like passing through successive arches, reducing the carbon footprint of concrete requires many coordinated steps over time. Photo courtesy of Najeeb Jindeel.