Requirements for Design of a Special Unbonded Post-Tensioned Precast Shear Wall Satisfying ACI ITG-5.1 (ACI ITG-5.2-09) and Commentary

An ACI Standard

Reported by ACI Innovation Task Group 5
Requirements for Design of a Special Unbonded Post-Tensioned Precast Shear Wall Satisfying ACI ITG-5.1 (ACI ITG-5.2-09) and Commentary

Copyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ACI.

The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities, omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionally find information or requirements that may be subject to more than one interpretation or may be incomplete or incorrect. Users who have suggestions for the improvement of ACI documents are requested to contact ACI. Proper use of this document includes periodically checking for errata at www.concrete.org/committees/errata.asp for the most up-to-date revisions.

ACI committee documents are intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. Individuals who use this publication in any way assume all risk and accept total responsibility for the application and use of this information.

All information in this publication is provided “as is” without warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement.

ACI and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of this publication.

It is the responsibility of the user of this document to establish health and safety practices appropriate to the specific circumstances involved with its use. ACI does not make any representations with regard to health and safety issues and the use of this document. The user must determine the applicability of all regulatory limitations before applying the document and must comply with all applicable laws and regulations, including but not limited to, United States Occupational Safety and Health Administration (OSHA) health and safety standards.

Order information: ACI documents are available in print, by download, on CD-ROM, through electronic subscription, or reprint and may be obtained by contacting ACI.

Most ACI standards and committee reports are gathered together in the annually revised ACI Manual of Concrete Practice (MCP).

American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331
U.S.A.
Phone: 248-848-3700
Fax: 248-848-3701

www.concrete.org

ISBN 978-0-87031-339-4
Requirements for Design of a Special Unbonded
Post-Tensioned Precast Shear Wall Satisfying
ACI ITG-5.1 (ACI ITG-5.2-09) and Commentary
An ACI Standard
Reported by ACI Innovation Task Group 5

Charles W. Dolan
Chair

Attila B. Beres
Ned M. Cleland
Neil M. Hawkins

Ronald Klemencic
Vilas S. Mujumdar
Suzanne Dow Nakaki

Stephen P. Pessiki
Carol K. Shield
John W. Wallace
Loring A. Wyllie, Jr.

Consulting member
S. K. Ghosh

This standard defines procedures that may be used to design special
precast concrete shear walls, coupled or uncoupled, composed of
discretely jointed precast panels that are vertically post-tensioned to the
foundation with unbonded tendons. Such walls are suitable for use in
regions of high seismicity and for structures assigned to high seismic
design categories. After a major seismic event, these walls can be expected
to exhibit minimal damage in the flexural hinging region at the base of the
wall as well as negligible permanent displacements. Such walls do not
satisfy the prescriptive requirements of Chapter 21 of ACI 318-05 for shear
walls of monolithic construction. According to 21.2.1.5 of ACI 318-05, their
acceptance requires demonstration by experimental evidence and analysis
that the walls have strength and toughness equal to or exceeding those
provided by comparable monolithic reinforced concrete walls that satisfy
the prescriptive requirements of Chapter 21. This standard describes the
procedures that the designer may use to demonstrate, through analysis,
that one type of unbonded post-tensioned precast wall has strength and tough-
ness at least equal to that of comparable special reinforced concrete monolithic
walls. The standard consists of Design Requirements and a Commentary.

Among the subjects covered in these Design Requirements are requirements
for:
1. Materials, including considerations for the coupling or connection
devices, that provide the primary source of energy dissipation for the wall system;
2. Individual walls, including considerations to ensure ductility,
energy dissipation, integrity, stiffness, and strength; and
3. Coupled walls, including considerations of the roles of the post-
tensioning tendons and coupling devices in providing energy dissipation,
and strength and stiffness for coupled walls greater than the sum of those
provided by the coupled walls acting as separate units.

The Commentary references documentary evidence, additional to the
references of ACI ITG-5.1-07 and Chapter 21 of ACI 318R-05, that supports
these Design Requirements. In this standard, however, no comparison is
made between the performance of precast test modules satisfying the
prescriptive requirements of ACI 318 and modules satisfying these Design
Requirements but not satisfying ACI 318. Such comparisons, both experi-
mental and analytical, are available in the cited references.

All references to ACI 318 and ACI 318R in these Design Requirements
and Commentary refer to ACI 318-05 unless another edition of ACI 318 is
specifically designated. All references to ASCE/SEI 7-05, including
Supplement No. 1.

In this standard, consistent with the format of ACI 318-05, the word
“Section” is not included before a reference to a section of ACI 318-05. To
more clearly designate a section in this standard, however, the word
“Section” is used before any reference to a section of this standard.
Consistent with the format of ASCE/SEI 7-05, the word “Section” is
included before a reference to a section of ASCE/SEI 7-05.

Keywords: coupling devices; drift angle; energy dissipation; lateral resis-
tance; post-tensioning; precast concrete; prestressed concrete; seismic
design; special shear wall; test module; toughness.
CHAPTER 1—GENERAL

1.1—Introduction
For regions of high seismic risk, where structures assigned to Seismic Design Category (SDC) D, E, or F shall be used, 21.2.1.5 of ACI 318 permits the use of structural systems that do not meet the prescriptive requirements of Chapter 21 if certain experimental evidence and analysis are provided (all references to ACI 318 and ACI 318R in this standard refer to ACI 318-05 unless another edition of ACI 318 is specifically designated). The intent of ACI ITG-5.1 is to define the minimum experimental evidence that is deemed sufficient to permit the use of unbonded post-tensioned precast structural wall systems, in accordance with 21.2.1.5 of ACI 318, when those systems do not satisfy fully the prescriptive requirements for wall systems in Chapter 21 of ACI 318.

Before validation testing can be undertaken, ACI ITG-5.1 requires that a design procedure be developed for prototype wall systems having the generic form for which acceptance is sought, and that design procedure is used to proportion the test modules. This standard defines the design procedure for a specific type of wall system that does not satisfy the prescriptive requirements of Chapter 21 of ACI 318, but is validated for use in regions of high seismicity under ACI ITG-5.1. The wall system uses precast concrete panels that are post-tensioned to the foundation and intended to rock on that foundation under seismic actions.

For coupled walls, coupling devices located along the vertical boundaries of adjacent walls provide the required energy dissipation and energy-dissipating reinforcement that crosses the wall-foundation interface is unnecessary. During an earthquake, the coupled walls displace as rigid bodies that are tied together. Wall deformations occur primarily at the interface between each individual wall and the foundation, with each wall rocking separately at that interface.

The unbonded post-tensioning has two purposes. First, the post-tensioning steel is deliberately designed to remain essentially elastic during the design basis earthquake (DBE), defined in ASCE/SEI 7, so that it forces the walls to return to their undeformed positions following the event. Second, the friction induced by the post-tensioning and gravity loading on the wall transfers the horizontal shears due to lateral loadings at the interfaces between the wall and the foundation and between the precast panels of the wall.

The detailing procedures described in this standard are for one specific type of unbonded post-tensioned precast shear wall system, coupled or uncoupled. Four statements define key characteristics of uncoupled and coupled unbonded post-tensioned precast concrete cantilever shear walls that satisfy this standard:

(a) Post-tensioning tendons unbonded from an anchor in the foundation to an anchor at the top of the wall and located in a single duct on the vertical centerline of the wall or, if needed, in two or more ducts positioned symmetrically on either side of that vertical centerline and within 10% of the wall length from that centerline;

(b) Precast panels one story or more in height; and

(c) For uncoupled walls, two sets of energy-dissipating reinforcing bars crossing the interface between the lower-