# CONTENTS

| 1.       | GENERAL                                                              |          |  |
|----------|----------------------------------------------------------------------|----------|--|
| 1.1      | Eurocodes1                                                           |          |  |
| 1.2      | Units of measurement                                                 |          |  |
| 1.3      | Symbols                                                              | 17       |  |
|          |                                                                      |          |  |
| 2.       | LIMIT STATES DESIGN<br>General                                       | 21       |  |
| 2.1      |                                                                      |          |  |
| 2.2      | Classification of actions                                            |          |  |
| 2.2.1    | Nominal/Characteristic values of loads                               | ،۲<br>20 |  |
| 2.2.2    | 2.2.2.1 Materials self-weights                                       |          |  |
|          | 2222 Floor coverings self-weights                                    | 22       |  |
|          | 2.2.2.3 Brick masonry loads                                          |          |  |
|          | 2.2.2.4 Imposed loads                                                | 24       |  |
|          | 2.2.2.4 Imposed loads                                                | 21       |  |
| 223      | Design values of actions                                             | 21       |  |
| 2.2.5    | 2 2 3 1 Non-seismic actions                                          |          |  |
|          | 2.2.3.1 Non-seismic actions                                          |          |  |
| 224      | Combinations of actions                                              |          |  |
| 2.2.4    | Wind influence                                                       | 26       |  |
| 2.2.0    | Effects of indirect actions                                          | 26       |  |
| 2.2.0    | Effects of actions                                                   |          |  |
| 2.3      | Deformation-stress definition of structures for combinations without | ΣΖΙ      |  |
| 2.0.1    | seismic actions (STR/GEO) [EC0, 6.4.1.]                              | 27       |  |
| 2.3.2    | Deformation-stress definition of structures for combinations with    |          |  |
|          | seismic (or accidental) actions                                      | 28       |  |
| 2.3.3    | Deformation-stress envelope definition                               |          |  |
| 2.4      | Strength of structural elements                                      |          |  |
| 2.5      | Exercise                                                             |          |  |
| 2        |                                                                      | 25       |  |
| ა.<br>ექ | STRUCTURAL WODEL AND ANALISIS                                        |          |  |
| 3.1      | Structural model                                                     |          |  |
| 3.1.1    | Effective span of beams and slabs                                    |          |  |
| 3.1.2    | Effective width of flanges                                           |          |  |
| 3.1.3    | Rigit bodies                                                         |          |  |

| 3.1.4 | Diaphra  | igmatic behaviour                                         | 40 |
|-------|----------|-----------------------------------------------------------|----|
| 3.2   | Seismic  | loading model                                             | 41 |
| 3.3   | Deform   | ations - Stresses                                         | 44 |
| 3.3.1 | Frame    | model                                                     | 44 |
| 3.3.2 | Slab an  | alysis                                                    | 45 |
| 3.3.3 | Frame a  | analysis                                                  | 46 |
| 3.3.4 | The effe | ect of torsional stiffness on indirect beam-beam supports | 56 |
| 3.3.5 | Modelli  | ng floor diaphragms using two-dimensional finite elements | 62 |
| 3.3.6 | Modelli  | ng slabs using members and finite elements                | 64 |
|       | 3.3.6.1  | The frame behaviour in regions of columns                 | 66 |
|       | 3.3.6.2  | Deflection of beams                                       | 68 |
|       | 3.3.6.3  | Torsional stiffness of beams                              | 70 |
|       | 3.3.6.4  | Final conclusion                                          | 71 |

| 4     | SLABS                                                          | 75  |
|-------|----------------------------------------------------------------|-----|
| 4.1   | General                                                        | 75  |
| 4.2   | Two-dimensional finite elements                                | 77  |
| 4.2.1 | Assumptions                                                    | 77  |
| 4.2.2 | Stress resultants and deflections                              | 84  |
| 4.2.3 | Unfavourable loadings and envelopes of stresses – deflections  | 116 |
| 4.2.4 | Clarifications                                                 |     |
| 4.3   | Analyses using tables                                          | 134 |
| 4.3.1 | Assumptions                                                    | 134 |
| 4.3.2 | Application width of concentrated load on slab                 | 134 |
| 4.3.3 | Distribution width of concentrated load                        |     |
| 4.3.4 | Support moments of continuous slabs                            | 140 |
| 4.3.5 | Contribution of pinned slab supports                           | 141 |
| 4.4   | Cantilevers                                                    | 142 |
| 4.4.1 | Static analysis                                                | 142 |
| 4.4.2 | Deflection                                                     | 142 |
| 4.5   | One-way slabs                                                  | 146 |
| 4.5.1 | Static analysis                                                | 146 |
| 4.5.2 | Deflection                                                     | 150 |
| 4.5.3 | Effective of live load on the static analysis of one-way slabs | 154 |
|       | 4.5.3.1 Accurate analysis method                               | 154 |

|       | 4.5.3.2 Simplified method for env          | elope estimation162            |  |  |
|-------|--------------------------------------------|--------------------------------|--|--|
| 4.6   | Two-way slabs163                           |                                |  |  |
| 4.6.1 | 1 Shear forces and support reaction forces |                                |  |  |
|       | 4.6.1.1 Simplified method                  |                                |  |  |
|       | 4.6.1.2 Czerny's elasticity method         | 166                            |  |  |
| 4.6.2 | Fundamental support and span me            | pments – Deflections167        |  |  |
|       | 4.6.2.1 MARCUS method                      |                                |  |  |
|       | 4.6.2.2 CZERNY's elasticity meth           | od171                          |  |  |
| 4.6.3 | Bending moments in continuous tw           | vo-way slabs171                |  |  |
|       | 4.6.3.1 Continuous strip method.           |                                |  |  |
|       | 4.6.3.2 Accurate method (manual            | )                              |  |  |
|       | 4.6.3.3 Practically accurate method        | pd174                          |  |  |
| 4.6.4 | Influence of live load                     |                                |  |  |
| 4.7   | Slabs supported on three edges             |                                |  |  |
| 4.8   | Slabs supported on two adjacent e          | dges179                        |  |  |
| 4.9   | Exercises                                  |                                |  |  |
|       |                                            |                                |  |  |
| 5.    | SEISMIC BEHAVIOUR OF FRAM                  | ES209                          |  |  |
| 5.1   | One-storey plane frames (or coupl          | ed columns)209                 |  |  |
| 5.1.1 | Bending and shearing effect on de          | formations and stresses209     |  |  |
| 5.1.2 | The degree of fixity effect of colum       | ns                             |  |  |
| 5.1.3 | The effect of columns moment of in         | nertia217                      |  |  |
| 5.1.4 | The effect of columns differential h       | eight                          |  |  |
| 5.1.5 | Frame column stiffness                     |                                |  |  |
|       | 5.1.5.1 One-storey frame structur          | al systems225                  |  |  |
|       | 5.1.5.2 One-storey dual structura          | systems                        |  |  |
| 5.2   | Coupled one-storey plane frames            |                                |  |  |
| 5.3   | Multistorey plane frames                   |                                |  |  |
| 5.3.1 | Multistorey plane frame systems            |                                |  |  |
| 5.3.2 | Multistorey plane dual systems             |                                |  |  |
| 5.3.3 | Comparison of multistorey frame a          | nd dual systems242             |  |  |
| 5.4   | Space frames                               |                                |  |  |
| 5.4.1 | Diaphragmatic behaviour                    |                                |  |  |
| 5.4.2 | Centre of mass and radius of gyra          | ion252                         |  |  |
| 5.4.3 | Centre of stiffness and elastic disp       | acements of the diaphragm254   |  |  |
|       | 5.4.3.1 Subject description                |                                |  |  |
|       | 5.4.3.2 Translation of centre of st        | ffness C⊤ along x direction255 |  |  |

|                                                                                                                | 5.4.3.3                                                                                                                                                                             | Translation of centre of stiffness $C_T$ along y direction                                                                                                                                                                                                                                                                                                                                                                                  | 256                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                                                                                                | 5.4.3.4                                                                                                                                                                             | Rotation of the diaphragm by an angle $\theta_z$ about $C_T$                                                                                                                                                                                                                                                                                                                                                                                | 257                                                                                                                 |
|                                                                                                                | 5.4.3.5                                                                                                                                                                             | Torsional stiffness ellipse, torsional radii and equivalent system                                                                                                                                                                                                                                                                                                                                                                          | 259                                                                                                                 |
|                                                                                                                | 5.4.3.6                                                                                                                                                                             | Work methodology                                                                                                                                                                                                                                                                                                                                                                                                                            | 262                                                                                                                 |
| 5.4.4                                                                                                          | Assess                                                                                                                                                                              | ment of building torsional behaviour                                                                                                                                                                                                                                                                                                                                                                                                        | 268                                                                                                                 |
| 5.4.5                                                                                                          | One-sto                                                                                                                                                                             | prey space frame with rectangular columns in parallel arrangement                                                                                                                                                                                                                                                                                                                                                                           | 269                                                                                                                 |
|                                                                                                                | 5.4.5.1                                                                                                                                                                             | Analysis using manual calculations, assuming fixed-ended columns (k                                                                                                                                                                                                                                                                                                                                                                         | (=12)270                                                                                                            |
|                                                                                                                | 5.4.5.2                                                                                                                                                                             | Analysis using the Excel file, assuming fixed-ended columns (k=12)                                                                                                                                                                                                                                                                                                                                                                          | 270                                                                                                                 |
|                                                                                                                | 5.4.5.3                                                                                                                                                                             | Analysis using the Excel file, assuming columns with k=6                                                                                                                                                                                                                                                                                                                                                                                    | 270                                                                                                                 |
|                                                                                                                | 5.4.5.4                                                                                                                                                                             | Analysis using software, assuming actual beam and column torsional stiffnesses                                                                                                                                                                                                                                                                                                                                                              | 270                                                                                                                 |
| 5.4.6                                                                                                          | Multisto                                                                                                                                                                            | rey space frame of rectangular columns in parallel arrangement                                                                                                                                                                                                                                                                                                                                                                              | 274                                                                                                                 |
|                                                                                                                | 5.4.6.1                                                                                                                                                                             | Analysis using manual calculations, assuming fixed-ended columns (k                                                                                                                                                                                                                                                                                                                                                                         | (=12)275                                                                                                            |
|                                                                                                                | 5.4.6.2                                                                                                                                                                             | Analysis using the Excel file, assuming fixed-ended columns (k=12)                                                                                                                                                                                                                                                                                                                                                                          | 275                                                                                                                 |
|                                                                                                                | 5.4.6.3                                                                                                                                                                             | Analysis using the Excel file, assuming columns with k=6                                                                                                                                                                                                                                                                                                                                                                                    | 275                                                                                                                 |
|                                                                                                                | 5.4.6.4                                                                                                                                                                             | Analysis using software, assuming actual beam and column torsional stiffnesses                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| 5.4.7                                                                                                          | Exercis                                                                                                                                                                             | es                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |
|                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |
| 6.                                                                                                             | SEISM                                                                                                                                                                               | IC ACCELERATIONS AND LOADINGS OF BUILDINGS                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     |
| 6.<br>6.1                                                                                                      | SEISMI<br>Seismic                                                                                                                                                                   | IC ACCELERATIONS AND LOADINGS OF BUILDINGS                                                                                                                                                                                                                                                                                                                                                                                                  | 291                                                                                                                 |
| 6.<br>6.1<br>6.1.1                                                                                             | SEISMI<br>Seismic<br>Seismic                                                                                                                                                        | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]                                                                                                                                                                                                                                                                                                                                              | 291<br>291<br>291                                                                                                   |
| 6.<br>6.1<br>6.1.1<br>6.1.2                                                                                    | SEISMI<br>Seismic<br>Seismic<br>Importa                                                                                                                                             | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>ance factors [EC8, §4.2.5]                                                                                                                                                                                                                                                                                                                | 291<br>291<br>291<br>291<br>292                                                                                     |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3                                                                           | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground                                                                                                                                   | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>nce factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]                                                                                                                                                                                                                                                                                           | 291<br>291<br>291<br>292<br>292                                                                                     |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4                                                                  | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous                                                                                                                        | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>nce factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]<br>s damping                                                                                                                                                                                                                                                                              | 291<br>291<br>291<br>292<br>292<br>292<br>294                                                                       |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavio                                                                                                             | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>ance factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]<br>s damping<br>bur factor q                                                                                                                                                                                                                                                             | 291<br>291<br>291<br>292<br>292<br>292<br>294<br>294                                                                |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavio<br>6.1.5.1                                                                                                  | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>ince factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]<br>s damping<br>bur factor q<br>Structural types [EC8 §5.2.2.1]                                                                                                                                                                                                                          | 291<br>291<br>291<br>292<br>292<br>292<br>294<br>294<br>294                                                         |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavic<br>6.1.5.1<br>6.1.5.2                                                                                       | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>ince factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]<br>s damping<br>bur factor q<br>Structural types [EC8 §5.2.2.1]<br>Regularity in plan [EC8 §4.2.3.2]                                                                                                                                                                                     |                                                                                                                     |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavic<br>6.1.5.1<br>6.1.5.2<br>6.1.5.3                                                                            | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>ince factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]<br>s damping<br>bur factor q<br>Structural types [EC8 §5.2.2.1]<br>Regularity in plan [EC8 §4.2.3.2]<br>Regularity in elevation [EC8 §4.2.3.3]                                                                                                                                           |                                                                                                                     |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavic<br>6.1.5.1<br>6.1.5.2<br>6.1.5.3<br>6.1.5.4                                                                 | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>ince factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]<br>s damping<br>our factor q<br>Structural types [EC8 §5.2.2.1]<br>Regularity in plan [EC8 §4.2.3.2]<br>Regularity in elevation [EC8 §4.2.3.3]<br>Ductility classes [EC8 §5.2.1]                                                                                                         | 291<br>291<br>291<br>292<br>292<br>292<br>294<br>294<br>294<br>294<br>296<br>297<br>301                             |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavic<br>6.1.5.1<br>6.1.5.2<br>6.1.5.3<br>6.1.5.4<br>6.1.5.5                                                      | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>nce factors [EC8, §4.2.5].<br>type [EC8, §3.1.2].<br>s damping<br>bur factor q<br>Structural types [EC8 §5.2.2.1].<br>Regularity in plan [EC8 §4.2.3.2].<br>Regularity in elevation [EC8 §4.2.3.3].<br>Ductility classes [EC8 §5.2.1].                                                                                                    |                                                                                                                     |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavic<br>6.1.5.1<br>6.1.5.2<br>6.1.5.3<br>6.1.5.4<br>6.1.5.5<br>6.1.5.6                                           | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5                                                         | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavic<br>6.1.5.1<br>6.1.5.2<br>6.1.5.3<br>6.1.5.4<br>6.1.5.5<br>6.1.5.6<br>6.1.5.7                                | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]<br>ince factors [EC8, §4.2.5]<br>type [EC8, §3.1.2]<br>s damping<br>bur factor q<br>Structural types [EC8 §5.2.2.1]<br>Regularity in plan [EC8 §4.2.3.2]<br>Regularity in elevation [EC8 §4.2.3.3]<br>Ductility classes [EC8 §5.2.1]<br>Basic value of the behaviour factor $q_0$ [EC8 §5.2.2.2]<br>Failure mode factor $k_w$ [EC8 §5.2.2.2] | 291<br>291<br>291<br>292<br>292<br>292<br>294<br>294<br>294<br>294<br>294<br>296<br>297<br>301<br>302<br>304<br>304 |
| <ol> <li>6.</li> <li>6.1</li> <li>6.1.1</li> <li>6.1.2</li> <li>6.1.3</li> <li>6.1.4</li> <li>6.1.5</li> </ol> | SEISMI<br>Seismic<br>Seismic<br>Importa<br>Ground<br>Viscous<br>Behavic<br>6.1.5.1<br>6.1.5.2<br>6.1.5.3<br>6.1.5.4<br>6.1.5.5<br>6.1.5.6<br>6.1.5.7<br>Design                      | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |
| 6.<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.1.4<br>6.1.5<br>6.1.5                                                | SEISMI<br>Seismid<br>Seismid<br>Importa<br>Ground<br>Viscous<br>Behavid<br>6.1.5.1<br>6.1.5.2<br>6.1.5.3<br>6.1.5.4<br>6.1.5.5<br>6.1.5.5<br>6.1.5.6<br>6.1.5.7<br>Design<br>Design | IC ACCELERATIONS AND LOADINGS OF BUILDINGS<br>c response of buildings<br>c zones [EC8, §3.2.1]                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |

| 6.3   | Seismic stresses                                                                  | . 311 |
|-------|-----------------------------------------------------------------------------------|-------|
| 6.3.1 | Seismic accelerations                                                             | 311   |
| 6.3.2 | Seismic forces, shear forces, bending moments                                     | 312   |
| 6.3.3 | Approximate method for the calculation of seismic accelerations [EC8, §4.3.3.2.2] | 313   |
| 6.3.4 | Cracking and plasticity effects                                                   | 314   |
| 6.4   | Applications                                                                      | 315   |
| 6.4.1 | Frame type structure                                                              | 315   |
| 6.4.2 | Wall-equivalent dual type structure                                               | 322   |
| 6.4.3 | Approximate analysis of the frame and wall type structures                        | 328   |
| 6.5   | Loading envelopes                                                                 | . 330 |
| 6.6   | Special cases                                                                     | . 333 |
| 6.6.1 | Columns not belonging in a diaphragm                                              | 333   |
| 6.6.2 | Vertical component of seismic action [EC8, §4.3.3.5.2]                            |       |

### APPENDICES

### APPENDIX A: MODELLING SLABS WITH FINITE ELEMENTS

| A.1   | Modellir | ng slabs with finite elements in a structural frame | . 337 |
|-------|----------|-----------------------------------------------------|-------|
| A.1.1 | The fram | me behaviour in the regions close to columns        | . 341 |
|       | A.1.1.1  | Model using members                                 | . 341 |
|       | A.1.1.2  | Model with finite elements                          | . 343 |
|       | A.1.1.3  | First Conclusion                                    | . 344 |
| A.1.2 | Deflecti | on of beams                                         | . 344 |
|       | A.1.2.1  | Model using members                                 | . 355 |
|       | A.1.2.2  | Model using finite elements                         | . 348 |
|       | A.1.2.3  | Second Conclusion                                   | . 351 |
| A.1.3 | Torsion  | al stiffness of beams                               | . 351 |
|       | A.1.3.1  | Model using members                                 | . 352 |
|       | A.1.3.2  | Model using finite elements                         | . 355 |
|       | A.1.3.3  | Third Conclusion                                    | . 358 |
|       | A.1.3.4  | FINAL CONCLUSION                                    | . 358 |
|       |          |                                                     |       |

#### APPENDIX B: STIFFNESS OF MULTISTOREY PLANE FRAMES

| B.1 | Stiffness of frame crossbar                                |  |
|-----|------------------------------------------------------------|--|
| B.2 | Equivalent multistorey frame – crossbar relative stiffness |  |
| B.3 | Relative stiffness of crossbar column                      |  |
| B.4 | Effect of slabs on stiffnesses using finite elements       |  |
| B.5 | Effect of walls on stiffnesses using finite elements       |  |

### APPENDIX C: DIAPHRAGMATIC BEHAVIOUR OF ONE-STOREY SPACE FRAME – GENERAL CASE

| C.1   | Subjec   | t description                                                                  |     |
|-------|----------|--------------------------------------------------------------------------------|-----|
| C.2   | Axis tra | Insformation                                                                   |     |
| C.3.  | Case 1   | : Translation of centre of stiffness $C_T$ along x direction by $\delta_{xo}$  |     |
| C.4   | Case 2   | : Translation of centre of stiffness $C_T$ along y direction by $\delta_{yo}$  |     |
| C.5   | Case 3   | : Rotation of the diaphragm by an angle $	heta_z$ about $C_{	au}$              |     |
| C.6   | Torsior  | al stiffness ellipse, torsional radii and equivalent system                    |     |
| C.7   | Superp   | osition of the three cases                                                     |     |
| C.8   | Work M   | 1ethodology                                                                    |     |
| C.9   | Expres   | sions relating the initial system X0Y and the principal system $xC_Ty$         |     |
| C.10  | One-st   | prey space frame with rectangular columns in random arrangement                |     |
|       | C.10.1   | Analysis using manual calculations, assuming fixed columns (k=12)              |     |
|       | C.10.2   | Analysis using the Excel file, assuming fixed-ended columns (k=12)             |     |
|       | C.10.3   | Analysis using the Excel file, assuming columns with k=6                       |     |
|       | C.10.4   | Analysis using software, assuming actual beam and column torsional stiffnesses | 392 |
| APPEN | DIX D:   | DIAPHRAGMATIC BEHAVIOUR OF MULTISTOREY<br>SPACE FRAME – GENERAL CASE           |     |
| D.1   | Subjec   | t description                                                                  |     |
| D.2   | Genera   | I method for the calculation of the diaphragm i data                           |     |
| D.3   | Diaphra  | agm lateral stiffnesses                                                        | 406 |
| D.4   | Diaphra  | agm torsional stiffness                                                        | 406 |
| D.5   | Torsior  | al stiffness distribution                                                      | 407 |
| D.6   | Equiva   | ent system – Relative lateral stiffness – Relative torsional stiffness         | 408 |
|       | D.7      | Examples                                                                       |     |

# 2.5 Exercise

The residential building of the sketch includes a basement of area  $12 \times 18 m^2$  and height 3 m, a ground floor and four storeys of identical dimensions and a top floor of area  $4 \times 6 m^2$  and height 2.5 m. The masses at levels 0, 1, 2, 3, 4 are equal to  $M_G=220 t$  and  $M_Q=44 t$ , at level 5 to  $M_G=180 t$  and  $M_Q=44 t$ , while at the top level to  $M_G=20 t$  and  $M_Q=4 t$ . The building is situated in the seismic area Z<sub>1</sub> and the distribution of seismic accelerations is triangular. The design seismic acceleration-of magnitude 0.12g is applied at the center of mass of the building.

The calculation of the seismic and wind forces as well as a comparison between them is asked.





 $M_i$  [t]: masses, w [kN/m<sup>2</sup>]: wind loads,  $a_i$  [m/sec<sup>2</sup>]: seismic accelerations

Since the building is residential  $\psi_2=0.30$  and consequently during an earthquake the dynamic masses are evaluated as  $M=M_{\rm G}+0.30\cdot M_{\rm Q}$ . Thus, the dynamic masses at levels 0, 1, 2, 3 and 4 are equal to  $M_{\rm G+0.30Q,i=0.4}=220+0.30\times44=233 t$ , at level 5 is equal to  $M_{\rm G+0.30Q,i=0.4}=220+0.30\times44=233 t$ , at level 5 is equal to  $M_{\rm G+0.30Q,i=0.4}=180+0.30\times44=193 t$ , while at the top level is equal  $M_{\rm G+0.30Q,i=2}=20+0.30\times4=21 t$ .



Figure 2.5-2: Wind forces  $F_w$  are less significant comparing to earthquake forces  $F_s$ . W [kN]: gravity loads  $F_w [kN]$ : wind forces  $F_s [kN]$ : seismic forces

# Assessment of seismic forces

The total mass of the building during earthquake is  $M=4\times233+193+21=1146 t$ , while the CM (mass center) is located at distance  $z_0$  from the ground floor basis:

$$z_0 = \frac{233 \times 3.0 + 233 \times 6.0 + 233 \times 9.0 + 233 \times 12.0 + 193 \times 15.0 + 21 \times 18.0}{1146} = \frac{10263tm}{1146t} = 9.0 \text{ m}$$

# 3.1.4 Diaphragmatic behaviour

In general, when there is eccentric loading at a floor, e.g. imposed by the horizontal seismic action, the in-plane rigidity of the slab forces all the in-plane points (therefore all column heads<sup>1</sup> on the slab) to move the same way.

The 3 displacements  $\delta_z$ ,  $\varphi_x$ ,  $\varphi_y$  of each node belonging to the diaphragm are independent of each other, while the rest  $\delta_x$ ,  $\delta_y$ ,  $\varphi_z$  are depended on the 3 displacements of point C<sub>T</sub> called Center of Elastic Torsion of the diaphragm. Displacements  $\delta_{xi}$ ,  $\delta_{yi}$ ,  $\varphi_{zi}$  at the point i of the horizontal diaphragm are expressed as:

 $\varphi_{zi} = \varphi_z$  $\delta_{xi} = \delta_{xCT} \cdot y_i \cdot \varphi_z$  $\delta_{yi} = \delta_{yCT} + x_i \cdot \varphi_z$ 



Figure 3.1.4-1: Diaphragmatic behaviour of floor

Figure 3.1.4-2: The displacements of a random point i of the diaphragm due to  $\phi_z$ 

In a floor diaphragm of 20 main and 14 slave nodes, the number of the unknown displacements (degrees of freedom) is equal to  $20 \times 3 + 3 = 63$ .

<sup>&</sup>lt;sup>1</sup> The term 'column' refers to columns as well as to walls.

is indicated by the red dashed line at the Interface of the related software so that the engineer is able to check the order of magnitude of the distribution of the seismic accelerations. Furthermore, using this method there is no need for additional dynamic response spectrum analysis.

### <u>Notes</u>

- The main comparison is performed on seismic accelerations. This is based on the fact that seismic forces provide the same fast visual outcome with respect to their vertical distribution, provided that all floor masses are identical.
- When the principle system is inclined, for earthquake in x direction only, the seismic accelerations are developed in both x, y directions. The same stands for earthquake in y direction only.
- The earthquake in x direction generates components in x direction only when the structure is symmetrical, otherwise it generates components in both directions.





Figure 3.3.3-1: The structural model of the frame considering loadings: g and q and the seismic W

The general analysis of the frame subjected to vertical uniform load *w*, from table 1 is:

$$k = \frac{I_2}{I_1} \cdot \frac{h}{l} = \frac{52.125}{21.33} \cdot \frac{3.0}{5.0} = 1.47$$

$$H = H_A = -H_B = \frac{l^2}{4h \cdot (k+2)} \cdot w = \frac{(5.0m)^2}{4 \cdot 3.0m \cdot (1.47+2)} \cdot w = 0.60m \cdot w,$$

$$V_A = V_B = \frac{l}{2} \cdot w = \frac{5.0m}{2} \cdot w = 2.50m \cdot w$$

$$M_A = -M_B = \frac{h}{3} \cdot H = \frac{3.0m}{3} \cdot 0.60m \cdot w = 0.60m^2 \cdot w$$

$$M_{CA} = M_{CD} = M_{DC} = -M_{DB} = -\frac{2}{3}h \cdot H = -\frac{2}{3} \cdot 3.0m \cdot 0.60m \cdot w = -1.20m^2 \cdot w$$

The general analysis of the frame subjected to horizontal load *W*, from table 39 is:

$$H_{A} = H_{B} = -\frac{W}{2} = -0.50W$$
$$V_{A} = -V_{B} = -\frac{3 \cdot h \cdot k}{l \cdot (6k+1)} \cdot W = -\frac{3 \cdot 3.0m \cdot 1.47}{5.0m \cdot (6 \cdot 1.47+1)} \cdot W = -0.27 \cdot W$$





- <sup>7</sup> This stress resultant, as well as most of the following, could be calculated by the simple observation of the symmetry both of structure and loading. However this general process is handling asymmetries as well, e.g. as in the 2<sup>nd</sup> loading.
- <sup>8</sup> x is the point of zero shear force corresponding to position of maximum bending moment.
- <sup>9</sup> From structural analysis it is known that the maximum bending moment  $M_{max}$  in a span *i*,*j* is located at the point *m* at distance *x* from the end *i*, where shear forces become zero. The moment at that point is given by the expression  $M_{max}=M_{i,j} + A_V$  where  $A_V$  is the area under the shear forces diagram from the point *i* to the point *m*. In this example, since there is only uniform load, the area is  $A_V = (V_{i,j} \cdot x)/2$ .

 $\frac{2^{\text{nd}} \text{ combination}: w=g + 0.30 \ q + "E_x"=33.0 + 0.30 \times 10.0 + "E_x"=36.0 \ kN/m + "E_x"}{M_A=M_{A,g}+0.30M_{A,q}+M_{A,W}=19.8 + 0.30 \times 6.0 - 100.8 = -79.2 \ kNm, M_B=-19.8 - 0.30 \times 6.0 - 100.8 = -122.4 \ kNm} \\ M_{CA}=M_{CD}=-39.6 - 0.30 \times 12.0 + 82.2 = 39.0 \ kNm, \\ M_{DC}=-39.6 - 0.30 \times 12.0 - 82.2 = -125.4 \ kNm, M_{DB}=39.6 + 0.30 \times 12.0 + 82.2 = 125.4 \ kNm, \\ H_A=H_{A,g}+0.30H_{A,q}+H_{A,W}=19.8 + 0.30 \times 6.0 - 61.0 = -39.4 \ kN, H_B=-19.8 - 0.30 \times 6.0 - 61.0 = -82.6 \ kN, \\ V_{A}=V_{A,g}+0.30V_{A,q}+V_{A,W}=82.5 + 0.30 \times 25.0 - 32.9 = 57.1 \ kN, V_B=82.5 + 0.30 \times 25.0 + 32.9 = 122.9 \ kN \\ V_{CD}=w\cdot l/2 + (M_{DC}-M_{CD})/l=36.0 \times 5.0/2 + (-125.4 - 39.4)/5.0 = 90.0 - 33.0 = 57.0 \ kN, \\ V_{DC}=V_{CD}-w\cdot l=57.0 - 36.0 \times 5.0 = -123.0 \ kN \\ N_{A}=-V_{CD}- \ self\ weight\ of\ column\ = -57.0 - 12.0 = -69.0 \ kN \\ N_{B}=V_{DC}- \ self\ weight\ of\ column\ = -123.0 - 12.0 = -135.0 \ kN \\ x=V_{CD}/w=57.0/36.0 = 1.58 \ m,\ M_{max}=M_{CD} + (V_{CD}\cdot x)/2 = 39.0 + (57.0 \times 1.58)/2 = 84.0 \ kNm, \\ w\cdot l^2/8=36.0 \times 5.0^2/8 = 112.5 \ kNm \end{aligned}$ 





Figure 3.3.3-7









### Combinations and Envelopes of stress resultants



-165.1 -165.1 [N\_d]



# <u>**3**<sup>rd</sup> combination</u>: $g+0.30q-E_X$ (additional combination U2)



Figure 3.3.3-22: Bending moment diagram and elastic line Figure 3.3.3-23: Shear force diagram





Figure 3.3.3-24: The three combinations of bending moments



Figure 3.3.3-25: Envelope of bending moments. The values given per 0.20 m are needed for the reinforcement design and the reinforcement detailing

# 3.3.6 Modelling slabs using members and finite elements

Finite element method assists in defining slabs behaviour with significant accuracy. However, in order for the results to represent the reality, suitable assumptions should be adopted. The effects of the following factors are examined thoroughly in Appendix A:

- 1) The frame behaviour at the regions close to columns
- 2) The deflection of beams
- 3) The torsional stiffness of beams

The above factors affect the behaviour of slabs. In order to investigate this effect, a simple structure is being modelled in two ways:

- (i) Using members, according to which the slab is modelled as a grid of main and secondary joists, without the assumption of rigid bodies.
- (ii) Using triangular finite elements.

The summary of Appendix A is presented below:



Figure 3.3.6-1: The structure of project <<u>B\_331</u>> of the related software (column sections 400/400, beam sections 300/500, slab thickness 170 mm)



Figure 3.3.6-3: Slab modelled with triangular finite elements (project <B\_331>, pi-FES) (a=beam-slab common deflection curve)

# 3.3.6.1 The frame behaviour in regions of columns

The model using both members and more accurate two-dimensional finite elements, takes into account the **slab frame behaviour in regions close to columns**, in contrast to the inexpensive approach of simply supported slab throughout its length. However, in order for the slab to behave as a common frame with the columns in the actual structure, the slab-columns connections (where strong negative bending moments are developed) should be reinforced with strong, correctly placed and well anchored negative top reinforcement at slabs. For this reason, the slab analysis using finite elements in common worksheets should consider pinned supports on columns.



Figure 3.3.6.1-1: Bending moment diagrams of joists of structure modelled with members (project <B\_336>)

In case of members, the two main side joists (of slab) forming a common frame with the columns, have greater torsional rigidity than the intermediate nearly simply supported main joists and bear heavier loads, thereby to develop strong negative bending moments at their supports and relatively low positive bending moments at their spans. The interim main joists develop strong positive bending moments at their spans, while being supported on the end joists through the secondary joists stressed by significant positive bending moments at their spans. In the more accurate model using two-dimensional finite elements, the main side strips behave intensively as frames. The results are similar to those of using members with the following differences: (a) In the main side strips (corresponding to the main side joists) the frame behaviour is more intensive, since the moments at the supports are greater and moments at the spans are smaller, (b) In the interim main strips (corresponding to the interim main joists) the span moments are smaller, (c) The span moments of the secondary strips (corresponding to secondary joists) end up to be greater. This is due to the fact that the internal torsional stiffness of the slab elements (torsion) is stronger than the respective of members.



Figure 3.3.6.1-2: Bending moment diagrams of slab strips modelled with triangular finite elements (project <<u>B\_331</u>>, pi-FES)