Concrete Craftsman Series: Slabs-on-Ground
Third Edition
PREFACE

The concrete craftsman can greatly influence the quality, durability, and appearance of the finished product. This manual from the ACI Concrete Craftsman Series presents information on concrete that should be useful to concrete craftsmen and deals mainly with construction practices relating to slabs-on-ground. This information can be used to train concrete craftsmen and is especially useful for those interested in earning credentials as ACI certified finishers.

Information in this manual is a guide to good practice but does not supersede the provisions in the plans and specifications for any project. If provisions in the plans and specifications vary from the guidance given in this manual, discuss the variances with the design professional. For more detailed information, also read ACI 302.1R, “Guide for Concrete Floor and Slab Construction,” and other documents listed in the reference section of this manual. Prior editions of this manual included a considerable amount of information on concrete materials and testing. For expanded coverage of materials and testing information, the reader is referred to The Contractor’s Guide to Quality Concrete Construction (ASCC-1), published jointly by the American Society of Concrete Contractors (ASCC) and ACI.

This manual was first issued under the guidance of the ACI Educational Activities Committee in 1982 as the first book in the ACI Concrete Craftsman Series. A second edition was approved and issued in 1994. Since 1987, when ACI launched the Concrete Flatwork Finisher/Technician certification program, ACI has been using this document as the primary reference for that program. The certification program was designed to provide a basis for certifying concrete finishers and to improve the quality of concrete construction. As a result of program growth, more than 7500 people have become certified Concrete Flatwork Finishers/Technicians. Some major retailers now specify that contractors constructing concrete floors for their stores have certified ACI Flatwork Finishers on site performing the work.

ACI Committee 301, Specifications for Concrete, took a major step toward formally recognizing the value of using ACI-certified finishers and technicians when, in 2002, they approved language in ACI 301, “Specifications for Concrete,” that states in part, “...Unless otherwise permitted, a minimum of one finisher or finishing supervisor shall be a certified ACI Flatwork Finisher/Technician or a certified Flatwork Technician as defined in ACI CP-10 or equivalent.” This was the first time ACI Committee 301 had included language requiring the use of qualified flatwork finishers for concrete placement.

ARCOM, a partner of the American Institute of Architects, also includes optional language in their MASTERSPEC® Specification System requiring cast-in-place concrete installers to be certified ACI Flatwork Finishers and Technicians, and installer supervisors to also be certified ACI Flatwork Technicians.

ACI Committee Reports, Guides, Manuals, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

This (third edition) supersedes CCS-1(94) (second edition) and was adopted and published January 2010.

Copyright © 2010, American Concrete Institute.
All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
CONTENTS

Chapter 1—Planning for slab-on-ground placement, p. CCS-1—3
 Introduction
 Specification requirements
 Determining the size of concrete placements
 Ordering concrete
 Concrete delivery
 Equipment
 Size of placing and finishing crews
 Preconstruction meeting

Chapter 2—Concrete materials, mixture proportioning, and control tests, p. CCS-1—9
 Portland cements
 Supplementary cementitious materials
 Blended cements
 Aggregates
 Maximum size of aggregate
 Aggregate grading
 Harmful substances in aggregate
 Mixing water
 Admixtures
 Mixture proportioning
 Control tests

Chapter 3—Preparation before placing concrete, p. CCS-1—19
 Subgrade preparation
 Compaction around buried pipes and excavations
 Establishing grades
 Placement sequence
 Setting side forms and screed guides
 Vapor retarders or barriers
 Reinforcement for shrinkage control
 Bulkheads and jointing
 Checklist of tools and materials

Chapter 4—Floor flatness and levelness, p. CCS-1—23
 Measuring floor flatness and levelness
 The 10 ft (3 m) straightedge method
 F-number system
 Factors affecting floor flatness and levelness

Chapter 5—Placing equipment, p. CCS-1—27
 Placing concrete directly from truck mixers
 Manual or motorized buggies
 Crane and bucket
 Concrete conveyors
 Concrete pumps

Chapter 6—Placing and finishing tools and equipment, p. CCS-1—33
 Spreading tools
 Consolidating or vibrating tools
 Laser-guided screeds

 Hand screeding tools
 Tools for smoothing after screeding
 Jointing and edging tools
 Hand floats and trowels
 Power floats and trowels
 Power saws

Chapter 7—Procedures for finishing slabs-on-ground, p. CCS-1—39
 Striking off (screeding) the concrete
 Bull floating or darbying
 Highway-type straightedging
 Waiting period
 Edging and jointing
 Brooming
 Floating
 Troweling
 Machine float and trowel direction and patterns
 Floating-to-troweling sequence
 Finishing when setting time varies from load to load
 Floating edges
 Walk-behind basics
 Hand floating and troweling
 Blade tilt

Chapter 8—Jointing, p. CCS-1—49
 Isolation joints
 Contraction joints
 Construction joints
 Joint filling

Chapter 9—Curing and protection of concrete, p. CCS-1—55
 Importance of curing
 When to start curing
 Curing methods
 Effects of high temperatures on concrete
 Causes and prevention of plastic shrinkage cracking
 Effects of low temperatures on concrete

Chapter 10—Finishing problems and possible solutions, p. CCS-1—61
 Excessive or insufficient bleeding
 Slow setting
 Surface crusting
 Blistering
 Delamination
 Fast setting
 Erratic setting
 Sticky concrete
 Rained-on surfaces
 Random cracking
 Craze cracking
 Discoloration
 Dusting
 Curling
 Scaling
CHAPTER 1—PLANNING FOR A SLAB-ON-GROUND PLACEMENT

Introduction
Specifications are written to help ensure that the contractor constructs a slab-on-ground that satisfies the owner. This manual supplements specifications by presenting basic information about slab-on-ground placing and finishing practices for commercial, industrial, and institutional projects. Most of the information can also be used to improve the quality of flatwork for residential projects. In the field, concrete placements are often referred to as concrete pours. In this manual, the preferred term placement will be used in place of the term pour.

Specification requirements
Just as project specifications may require the contractor to use certified ACI Flatwork Finishers, they also may contain much more information on the specific requirements for the slab-on-ground placements. It’s important that the finisher foreman read and understand the specifications (Fig. 1.1) because they convey the owner’s requirements. Typical project specifications contain requirements related to:

- Material properties;
- Concrete strength and durability;
- Mixture proportions;
- Vapor retarders or barriers;
- Reinforcement;
- Slab flatness and levelness;
- Joint spacing and depth, and timing of the joint forming (whether by grooving the fresh concrete or sawing with an early-entry or conventional saw); and
- Curing and protection.

If the specifications or drawings do not address these issues, it’s best to address them at the preconstruction meeting before starting any slab-on-ground placement.

Determining the size of concrete placements
Slab-on-ground placements can range from very small to more than 50,000 ft² (4650 m²) in a single placement (Fig. 1.2). Refer to the sidebar for the factors to consider when determining the appropriate size of the concrete placement. The concrete delivery rate should be matched with the placing equipment capability and production capabilities of the placing and finishing crews. If a concrete producer is told to deliver 300 yd³/hour (230 m³/hour) to a job on which a crane and bucket can place only 50 yd³/hour (38 m³/hour), placement delays can cause fresh concrete properties to vary from truck to truck. Inconsistent concrete properties make the finishers’ job more difficult.

Many contractors make a small first placement on every project to ensure smooth coordination between the concrete producer, the placing equipment, and the placing and finishing crews. After confirming that all activities are coordinated, placement size can be increased. Construction schedules and contractor economics typically dictate daily concrete placements of 10,000 to 20,000 ft² (900 to 1800 m²) unless a laser-guided, wheel-mounted screed is used, in which case daily placements from 30,000 to 50,000 ft² (2800 to 4600 m²) are possible.

Factors to consider when determining appropriate placement size
- Concrete delivery rate, yd³/hour (m³/hour);
- Placing equipment rate, yd³/hour (m³/hour);
- Placing crew production, yd²/hour (m²/hour);
- Finishing crew production, ft²/hour (m²/hour);
- Availability of equipment or manpower in case of a breakdown or shortage;
- Ability to install an emergency construction joint;
- Ability to handle problems that may arise due to cold or hot weather;
- Concrete setting time;
- Experience of equipment operators and placing and finishing crew;
- Floor flatness and levelness requirements;
- Specialty surface finishes, toppings, or dry-shake hardeners required;
- Construction schedule; and
- Economics.

Ordering concrete
Concrete is sold by volume—in cubic yards or cubic meters—while in a freshly mixed unhardened state and as discharged from the truck mixer. The next sidebar contains Fig. 1.1—ACI 301, “Specifications for Structural Concrete,” requires at least one finisher or finishing supervisor to be a certified ACI Flatwork Concrete Finisher/Technician or a certified ACI Flatwork Technician.
An example of how the volume of concrete needed for a slab placement is calculated.

In addition to the volume of concrete needed, the concrete producer needs to know who is ordering the concrete, what properties are required, where the concrete will be delivered, and when it is needed. Be prepared to provide an accurate delivery address, date and time of delivery, quantity, and mixture properties desired. The items in the following checklist should be given to the concrete producer when ordering concrete.

Checklist for ordering concrete

- Volume of concrete;
- Who is ordering;
- Where to deliver;
- When to deliver;
- Delivery rate; and
- Mixture properties:
 - Strength;
 - Water-cementitious material ratio;
 - Slump;
 - Air content; and
 - Maximum aggregate size.

Concrete delivery

Because fresh concrete properties start to change as soon as the concrete is mixed with water, finishers should be prepared for concrete delivery. First, make sure the truck has adequate space to enter the site and reach the placement area. This may require the use of a flagger to direct traffic and keep all other traffic out of the way when the concrete truck arrives. Other construction materials can sit for hours and

How is concrete quantity calculated?

Consider as an example a 10,000 ft2 (900 m2) strip concrete placement measuring 200 ft (60 m) long x 50 ft (15 m) wide and 5 in. (125 mm) thick. First, convert all measurements (length, width, and thickness) to feet (meters) and then multiply them together. This gives the volume of concrete in ft3 (m3). For the example, convert the 5 in. to feet by dividing by 12 to obtain 5/12 ft = 0.42 ft (convert 125 mm to meters by dividing by 1000 to obtain 125/1000 m = 0.125 m). Because all the other measurements are in feet (meters), multiply the length times the width times the thickness, or 200 ft x 50 ft x 0.42 ft to get 4200 ft3 (60 m x 15 m x 0.125 m to get 112.5 m3). Because there are 27 ft3 in 1 yd3, divide the volume in ft3 by 27 to obtain the volume in yd3.

For this example, 4200/27 = 155.6 yd3.

It’s common to add 10% or 15% to small loads and 5% to 10% to larger orders to compensate for subgrade settlement, uneven subgrade, spillage, and waste. In this example, add 5% of the total: 155.6 yd3 x 0.05 = 7.8 yd3 (112.5 m3 x 0.05 = 5.6 m3). The volume of concrete to be ordered for this placement would be 155.6 yd3 + 7.8 yd3 = 163.4 yd3 (112.5 m3 +5.6 m3 = 118.1 m3). Usually, the order is rounded up to the nearest yd3 (m3), or 164 yd3 (119 m3). That would require 16 trucks carrying 10 yd3 loads and one partial load of 4 yd3 (15 trucks carrying 7.5 m3 loads and one partial load of 6.5 m3).

Some finishers mark locations on the forms where they should have placed a given volume of concrete. For this example, when the placement is halfway done, the amount of concrete used should be about 164 yd3/2 = 82 yd3 (119 m3/2 = 59.5 m3). For 10 yd3 (7.5 m3) trucks, about eight truckloads should have been placed at the halfway point of the placement. If more than eight trucks have discharged when the halfway point is reached, more concrete than originally anticipated may be needed to finish the placement. The concrete supply needs should be re-evaluated during placement, and any changes should be communicated to the concrete producer.
Still be useable, but delays in concrete placement can result in concrete that is hard to transport, place, and finish.

Determine whether there is enough space for two or more concrete trucks to be on site and discharging concrete without truck-to-truck delays. For concrete placements using a pump, it’s best to have access so that two concrete trucks can both be in position to discharge into the pump hopper. That way, as one truck is finishing, the other truck can already be backed in and ready to unload concrete so there is a continuous flow of concrete to the pump.

Most project specifications refer to ASTM C94, “Standard Specification for Ready-Mixed Concrete” (Fig. 1.3). This specification limits how long the truck can wait before the concrete is used. The concrete must usually be completely discharged within 1-1/2 hours after water has been added to the cement and aggregates or before the drum has reached 300 revolutions, whichever comes first. The truck driver’s batch ticket lists the time that the concrete was loaded, so the end of the 1-1/2-hour time period can be determined. Trucks are equipped with a revolution counter that records the number of times the drum revolves. An inspector looks at the batch ticket and the revolution counter to determine if the concrete can still be used. Workers should be prepared before concrete is delivered so they can discharge the trucks before the time limit or drum revolutions is reached.

The number of trucks arriving for each placement will vary. Plan to get the trucks onto the site for discharge, then to a washout area and away from the site as quickly as possible.

A 10 yd³ (7.5 m³) load of concrete can be completely discharged from a concrete truck in about 4 to 5 minutes, but trucks are unlikely to discharge that quickly on most jobs. Typically, it takes about 15 to 20 minutes to empty a truck, depending on whether it can discharge completely in one spot or must be moved to different areas before the mixing drum is empty. Because of the time limit on discharging concrete, limited space at most construction sites, and congestion at the point of truck discharge, most finishers prefer concrete truck arrivals to be spaced about 15 minutes apart, especially when concrete will be discharged from the chute and onto the slab base course. This usually allows enough time for the first truck to be empty when the next truck has arrived on site. The new load of concrete can be checked or tested, and the new truck can be positioned when the preceding truck pulls away.

Equipment

Required equipment for each placement varies, but some general equipment is required on each job. Spare equipment, such as vibrating screeds, power trowels, or curing compound sprayers, may be needed in case of breakdowns. Materials for installing emergency bulkheads (forms for closing a section of the slab and creating a construction joint) should also be available. Emergency bulkheads may be needed if concrete delivery is interrupted or if placing equipment breaks down and can’t be replaced.

The productivity of each piece of equipment varies greatly depending on the experience of the placing and finishing crews and the concrete properties. Some average production rates to assist finishers in selecting the needed equipment (Fig. 1.4) for a placement include:

- Walk-behind power trowel: 1000 to 3000 ft² (90 to 280 m²) daily;
- Ride-on trowel: 3000 to 6000 ft² (280 to 560 m²) daily; and
- Laser-guided, wheel-mounted screed: 30,000 to 50,000 ft² (2800 to 4600 m²) daily.

For comparison purposes, an experienced hand-finishing crew can finish about 1000 to 2000 ft² (90 to 190 m²) of slab in a day.

Size of placing and finishing crews

The size of each crew affects the labor cost for the placement. Although keeping placing and finishing crew size to a minimum reduces labor costs, it might not provide enough labor to handle some possible job-site contingencies, such as:

- Workers who call in sick or are injured during the placement;
- Concrete that sets faster than expected due to weather changes;
- Inconsistent fresh concrete properties that delay finishing;
- Equipment breakdowns; and
- The need for early sawing to prevent cracking on windy days.

Overlapping placing and finishing crews provides some flexibility. If the finishing crew needs more help, some