Report on Design and Construction of Fiber-Reinforced Precast Concrete Tunnel Segments
Reported by ACI Committee 544
Report on Design and Construction of Fiber-Reinforced Precast Concrete Tunnel Segments

Copyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ACI.

The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities, omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionally find information or requirements that may be subject to more than one interpretation or may be incomplete or incorrect. Users who have suggestions for the improvement of ACI documents are requested to contact ACI via the errata website at http://concrete.org/Publications/DocumentErrata.aspx. Proper use of this document includes periodically checking for errata for the most up-to-date revisions.

ACI committee documents are intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. Individuals who use this publication in any way assume all risk and accept total responsibility for the application and use of this information.

All information in this publication is provided “as is” without warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement.

ACI and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of this publication.

It is the responsibility of the user of this document to establish health and safety practices appropriate to the specific circumstances involved with its use. ACI does not make any representations with regard to health and safety issues and the use of this document. The user must determine the applicability of all regulatory limitations before applying the document and must comply with all applicable laws and regulations, including but not limited to, United States Occupational Safety and Health Administration (OSHA) health and safety standards.

Participation by governmental representatives in the work of the American Concrete Institute and in the development of Institute standards does not constitute governmental endorsement of ACI or the standards that it develops.

Order information: ACI documents are available in print, by download, on CD-ROM, through electronic subscription, or reprint and may be obtained by contacting ACI.

Most ACI standards and committee reports are gathered together in the annually revised ACI Manual of Concrete Practice (MCP).

American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331
Phone: +1.248.848.3700
Fax: +1.248.848.3701

www.concrete.org
Fiber reinforcement has emerged as an alternative to traditional reinforcing bars and welded wire mesh reinforcement for precast concrete tunnel segments. Due to significantly improved post-cracking behavior and crack control characteristics, fiber-reinforced concrete (FRC) segments offer advantages over tradition-
CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction

Precast concrete segments are installed to support the tunnel bore behind the tunnel-boring machine (TBM) in soft ground and weak rock applications. The TBM advances by reacting against the completed rings of precast concrete segments that typically provide both the initial and final ground support as part of a one-pass liner system. These segments are typically designed to resist the permanent loads from the ground and groundwater, as well as the temporary loads from production, transportation, and construction. Tunnel segments are generally reinforced to resist the tensile stresses at both the serviceability limit state (SLS) and the ultimate limit states (ULS). With traditional reinforcing bar, a significant amount of labor is needed to assemble the cages and place the reinforcing bar.

Fiber-reinforced concrete (FRC) can be used to enhance handling and placement of precast concrete segments with the added benefit of reducing job-site labor requirements. FRC considerably improves the post-cracking behavior, defined as toughness (di Prisco et al. 2009), and it has better crack control characteristics than conventional steel-bar-reinforced concrete (Minelli et al. 2011; Tiberti et al. 2014).

The use of FRC generally results in smaller crack widths and improved durability over the life of the structure. Because of the uniform dispersion of fibers throughout the segment, including the area around the segment face, fiber reinforcement effectively resists the bursting and spalling stresses that develop during the TBM jacking process. de Waal (1999) and Schnütgen (2003) highlight the beneficial effect of FRC in the presence of concentrated loads and bursting. Furthermore, the presence of fiber in the concrete matrix increases the fatigue and impact resistance of the segments that help mitigate against unintentional impact loads during segment handling and tunnel construction operations (di Prisco and Felicetti 2004).

Reinforcing bar is efficient for resisting localized stresses in the concrete segment such as stresses due to concentrated loads during production. The distributed stresses such as stresses due to earth pressure and groundwater loads at final service stage, however, are better dealt with by fiber reinforcement. Because both localized and distributed stresses are generally present in tunnel linings, segments can be manufactured using a combination of conventional reinforcing bar and fiber reinforcement—that is, a hybrid system. For larger-diameter tunnels with high internal forces, a combined solution of fibers and reinforcing bar may present an ideal solution (Plizzari and Tiberti 2006, 2007; de la Fuente et al. 2012). Using current technology with high-strength concrete segments, tunnel rings of more than 23 ft (7 m) in diameter have been used successfully (Abbas et al. 2014). Examples include Grosvenor Coal Mine, Channel Tunnel Rail Link Tunnel, and Blue Plains Tunnel with internal diameters of 23, 23.5, and 23 ft (7, 7.15, and 7 m), respectively.

The slenderness of the tunnel segment (λ), defined as the ratio between the breadth or curved length of segment along