Guide for Specifying Underground Shotcrete

Reported by ACI Committee 506
Guide for Specifying Underground Shotcrete
Reported by ACI Committee 506

Peter C. Tatnall*
Chair

Lawrence J. Totten
Vice Chair

Dudley R. Morgan*
Secretary

Jon B. Ardahl
Lars F. Balck, Jr.
Michael Ballou*
Nemkumar Banthia
Chris D. Breeds
Patrick O. Bridger
Wern-Pink Nick Chen*
Jean-François Dufour*
John R. Fichter

Martin Gendreau
Jill E. Glassgold
Warren L. Harrison*
Merlyn Isaac
Marc Jolin*
Kristian Loevlie*
Mark R. Lukkarila
Gregory S. McKinnon

Jeffrey L. Novak
H. Celik Orzyildirim
Harvey W. Parker†
Ryan E. Poole
John H. Pye*
James A. Ragland
Venkataswamy Ramakrishnan
Michael Rispin*

Raymond C. Schallom, III*
Raymond J. Schutz
Philip J. Seabrook
W. L. Snow, Sr.
Curtis White
Peter T. Yen
George Yoggy*
Christopher M. Zynda

*Subcommittee members who produced this report.
†Subcommittee Co-chairs who produced this report.

The Committee acknowledges Bill Edgerton, Janice Lindell, J. Denis O’Donnell, Sr., and Fred Sherrill for their contributions to this report.

This document provides a guide for owners, contractors, designers, and testing, specifying, and inspection organizations engaged in the application of shotcrete for underground support. The guide provides general information for the selection of constituent materials, and methods to proportion shotcrete. Typical methods of batching, mixing, and handling of proportioned shotcrete materials are detailed along with shotcrete placement methods and equipment.

Keywords: acceptance criteria; batching; inspection; methods of payment; mine and tunnel support systems; mixing and placement equipment; mixture proportioning; preconditioning and construction testing; quality assurance; quality control; safety; shotcrete; shotcrete application.

CONTENTS
Chapter 1—Introduction and scope, p. 506.5R-3
1.1—Introduction
1.2—Scope

Chapter 2—Notation and definitions, p. 506.5R-5
2.1—Notation
2.2—Definitions

Chapter 3—Submittals, p. 506.5R-6
3.1—Contracts
3.2—Recommended specifications

Chapter 4—Materials, p. 506.5R-8
4.1—Accelerators
4.2—Recommended specifications

ACI Committee Reports, Guides, Manuals, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

ACI 506.5R-09 was adopted and published August 2009.
Copyright © 2009, American Concrete Institute.
All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.

506.5R-1
Chapter 5—Anchorage and reinforcement, p. 506.5R-11
5.1—Composite support systems
5.2—Shotcrete with pattern rock bolts or anchors
5.3—Shotcrete with rock bolts, friction stabilizers, and welded wire reinforcement
5.4—Fiber-reinforced shotcrete
5.5—Shotcrete with lattice girders
5.6—Shotcrete with conventional steel sets
5.7—Recommended specifications

Chapter 6—Materials handling and storage, p. 506.5R-15
6.1—General
6.2—Temperature considerations
6.3—Recommended specifications

Chapter 7—Shotcrete mixture proportioning, p. 506.5R-16
7.1—General
7.2—Mixture proportions by trial batching or historical data submissions
7.3—In-place mixture proportions
7.4—Dry-mix shotcrete
7.5—Wet-mix shotcrete
7.6—Recommended specifications

Chapter 8—Performance requirements, p. 506.5R-20
8.1—General
8.2—Water-cementitious material ratio
8.3—Air content
8.4—Slump
8.5—Boiled absorption and permeable voids
8.6—Compressive strength
8.7—Flexural strength and toughness
8.8—Early-age strength
8.9—Other tests
8.10—Bond strength
8.11—Explosive spalling protection
8.12—Recommended specifications

Chapter 9—Quality assurance and quality control, p. 506.5R-23
9.1—General
9.2—Recommended specifications

Chapter 10—Preconstruction trials and testing, p. 506.5R-24
10.1—General
10.2—Recommended specifications

Chapter 11—Construction acceptance inspection, p. 506.5R-27
11.1—General
11.2—Acceptance inspection
11.3—Specific inspection and test quality control requirements for underground shotcrete
11.4—Cold placement conditions
11.5—Hot placement conditions
11.6—Shotcrete acceptance and rejection
11.7—Recommended specifications

Chapter 12—Batching, mixing, and supply, p. 506.5R-31
12.1—Handling of bulk bin-bags
12.2—Quality control considerations
12.3—Recommended specifications

Chapter 13—Placing equipment, p. 506.5R-34
13.1—Pumps
13.2—Guns
13.3—Nozzle systems
13.4—Remote-controlled spraying
13.5—Recommended specifications

Chapter 14—Auxiliary equipment, p. 506.5R-37
14.1—Air supply
14.2—Recommended specifications

Chapter 15—Safety, p. 506.5R-39
15.1—General
15.2—Underground safety
15.3—Required personal safety equipment
15.4—View of shotcrete work
15.5—Communications
15.6—Nonpersonal safety equipment
15.7—Recommended specifications

Chapter 16—Preparation for shotcreting and groundwater control, p. 506.5R-41
16.1—General
16.2—Factors affecting shotcrete adhesion and bonding
16.3—Surface preparation
16.4—Groundwater
16.5—Recommended specifications

Chapter 17—Ground reinforcement installation, p. 506.5R-43
17.1—General
17.2—Rock bolt installation
17.3—Steel set installation
17.4—Lattice girder installation
17.5—Recommended specifications

Chapter 18—Shotcrete application, p. 506.5R-44
18.1—Methods used to control thickness
18.2—Cover, alignment, and tolerance
18.3—Recommended specifications

Chapter 19—Curing and protection, p. 506.5R-46
19.1—General
19.2—Protection
19.3—Recommended specifications

Chapter 20—Shotcrete for repair and rehabilitation of underground structures, p. 506.5R-47
20.1—General
20.2—Materials selection
20.3—Shotcrete placement methods for repair
CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction

Shotcrete, the method of spraying concrete onto a surface, is ideally suited for the support and construction of underground excavations in earth and rock structures. The pneumatic projection of shotcrete onto a surface at high velocity provides specific quality enhancements that interact with the ground surface and prepared substrates, providing superior bond characteristics; increased density; and resultant strength, durability, and toughness. These qualities are desirable in ground support and lining applications. In North America, shotcrete is conventionally defined as pneumatically applied concrete, while in Europe it is more commonly referred to as sprayed concrete.

Although concrete plays a very important role in underground construction, shotcrete has many advantages over concrete. Final concrete linings for tunnel and underground structures are typically composed of cast-in-place or precast concrete sections that provide a structurally sound and durable subsurface infrastructure. The principal disadvantage with these systems is that they are difficult to install during the excavation phase of tunnel construction. They require formwork or assembly systems that simply cannot be employed in tunnel openings where the immediate concern is ensuring a safe and stable excavation. Accordingly, the cast-in-place lining is often placed after excavation is complete, which results in a much longer time to complete the tunnel.

In contrast, shotcrete in combination with other support elements can provide early and effective ground support and, therefore, a means of ground control necessary for safe, viable, and economic tunnel construction under a wide range of geological conditions.

Shotcrete technology has been broadly developed throughout the construction industry over the last century. The evolution of mining and civil tunneling methods has placed unique demands on the materials, equipment, and personnel that comprise current concepts of a shotcrete system for underground support. With this gradual evolution in technology and trial and error, came acceptance, adaptation, and new means and methods of successful shotcrete application. The design and placement of shotcrete underground is much more challenging than shotcreting above ground.

Underground construction and shotcrete application are unique and very demanding. The primary focus is worker safety and the need to provide immediate and effective ground support. Whereas the industry as a whole would accept the performance associated with the compressive strength developed in shotcrete at 28 days, early 8-hour to 1-day strength is critical to the performance of underground shotcrete. Much of the shotcrete is applied overhead to irregular tunnel profiles immediately following blasting or other modes of excavation. Geological and groundwater conditions are not always predictable; opening stability and rockfalls present a clear hazard to the shotcrete crew. Conditions may be such that the window available for shotcrete application is minutes or a few hours. The use of accelerating admixtures is a unique feature of underground shotcrete application in that it provides a means of controlled and rapid strength gain immediately following application.

Tunnel or mining activities typically take place on a continuous and cyclical basis. The process of excavation, muck removal or mineral extraction, and ground support installation are repeated. To be viable and acceptable, shotcrete application should be an integral part of the overall cycle. This requires that the shotcrete system as a whole be reliable, efficient, and effective.

The underground environment can impose significant constraints and demands on the batching, mixing, handling, and placement of shotcrete. The unique logistical demands associated with underground shotcrete application may require access to the underground work area via shaft, adit, or ramp, and the subsequent use of long and restrictive haulage routes or dropping through a borehole or slickline. This frequently results in extended handling and discharge times. At any time, production can be disrupted, and shotcrete installation delayed or disrupted. This is particularly problematic if ground conditions deteriorate and the demand for shotcrete as ground support becomes more critical. Finally, the environment is hostile for worker safety, efficiency, and quality control, as well as for quality shotcrete placement and curing conditions. Figures 1.1 to 1.3 illustrate typical conditions at the heading of tunnels and mines.

These types of problems have led to specifically designed systems for batching and handling of shotcrete materials, admixtures, and placement equipment. These systems require significant investment not only in terms of capital, but also in providing experienced supervisory shotcrete and production personnel. Training and supervision have led to improvements in the quality and consistency of shotcrete in underground shotcrete applications. The consequences of deficient shotcrete in any ground support application are obvious. Quality assurance, quality control, and the associated inspection and testing activities are equally important in achieving a successful shotcrete program.

A major task faced by the underground shotcrete industry is the ability to demonstrate to owner, designer, specifier, and inspection and testing personnel that high-quality shotcrete can be produced consistently. It is therefore important that owners and others have an understanding and appreciation of how a shotcrete system—materials, batching, handling, placing equipment, and trained quality supervisory and production personnel—fits into their underground project so as to ensure that shotcrete specifications are met. The efforts