Applications of fiber-reinforced polymer (FRP) composites as reinforcement for concrete structures have been growing rapidly in recent years. ACI Committee 440 has published design guidelines for internal FRP reinforcement, externally bonded FRP reinforcement for strengthening, prestressed FRP reinforcement, and test methods for FRP products. Although these guidelines exist, new products and applications continue to be developed. Thus, this report summarizes the current state of knowledge on these materials and their application to concrete and masonry structures. The purpose of this report is to act as an introduction to FRP materials in areas where ACI guides exist, and to provide information on the properties and behavior of concrete structures containing FRP in areas where guides are not currently available. If an ACI guide is available, the guide document supersedes information in this report, and the guide should always be followed for design and application purposes. ACI Committee 440 is also in the process of developing new guides and thus the current availability of guides should be checked by the reader. In addition to the material properties of the constituent materials (that is, resins and fibers) and products, current knowledge of FRP applications, such as internal reinforcement including prestressing, external strengthening of concrete and masonry structures, and structural systems, is discussed in detail. The document also addresses durability issues and the effects of extreme events, such as fire and blast. A summary of some examples of field applications is presented.

Keywords: aramid fibers; blast; bridges; buildings; carbon fibers; composite materials; corrosion; design; dowels; ductility; durability; external reinforcement; fatigue; fiber-reinforced polymer (FRP); fibers; fire; glass fiber; masonry; mechanical properties; polymer resin; prestressed concrete; seismic; stay-in-place forms; structural systems; test methods.

CONTENTS

Chapter 1—Introduction and scope, p. 440R-2
1.1—Introduction
1.2—Historical perspective of FRP composites
Chapter 2—Notation and definitions, p. 440R-4
2.1—Notation
2.2—Definitions

Chapter 3—Codes and standards, p. 440R-8
3.1—Materials
3.2—Internal FRP reinforcement
3.3—External FRP reinforcement

Chapter 4—Composite materials and processes, p. 440R-11
4.1—Introduction
4.2—Polymer matrix: resins
4.3—Reinforcing fibers
4.4—Types of reinforcement
4.5—Additives and fillers
4.6—Core materials for sandwich structures
4.7—Adhesives
4.8—FRP manufacturing processes

Chapter 5—Properties, test methods, and nondestructive evaluation, p. 440R-18
5.1—Introduction
5.2—Typical properties of currently available products
5.3—Test methods for mechanical properties
5.4—Durability testing methods
5.5—Nondestructive inspection techniques for FRP materials

Chapter 6—Performance of concrete members with internal FRP reinforcement, p. 440R-24
6.1—Strength
6.2—Serviceability
6.3—Bond and development of reinforcement
6.4—Fatigue performance
6.5—Members reinforced with FRP grating systems
6.6—Members reinforced with FRP grids
6.7—Pavement applications

Chapter 7—Prestressed concrete members, p. 440R-30
7.1—FRP tendons
7.2—Anchorage
7.3—Flexural behavior
7.4—Fatigue behavior
7.5—Time-dependent behavior
7.6—Ductility and deformability
7.7—Transfer and development length
7.8—Shear behavior
7.9—External tendons
7.10—Prestressed poles

Chapter 8—Repair, strengthening, and retrofitting, p. 440R-35
8.1—Flexural strengthening with non-prestressed FRP
8.2—Flexural strengthening with prestressed FRP
8.3—Shear strengthening
8.4—Axial strengthening of columns
8.5—Seismic strengthening and retrofitting
8.6—Mechanically fastened fiber-reinforced polymer (MF-FRP) laminates
8.7—Strengthening using near-surface-mounted FRP reinforcement
8.8—Design procedures

Chapter 9—Structurally integrated stay-in-place FRP forms, pp. 440R-43
9.1—Introduction
9.2—Advantages and limitations of system
9.3—Structural composition of FRP forms
9.4—Fabrication processes of FRP structural forms
9.5—Concrete component
9.6—Construction considerations
9.7—Behavior of axial members
9.8—Behavior of flexural and axial/flexural members

Chapter 10—Masonry applications, p. 440R-51
10.1—Introduction
10.2—FRP strengthening techniques
10.3—FRP repair and strengthening of masonry
10.4—Design and application considerations

Chapter 11—Durability of FRP used in concrete, p. 440R-56
11.1—Definition of durability
11.2—Durability of FRP composites
11.3—Internal reinforcement
11.4—External reinforcement
11.5—Structurally integrated stay-in-place (SIP) forms

Chapter 12—Fire and blast effects, p. 440R-63
12.1—Introduction
12.2—Fire
12.3—Blast effects

Chapter 13—Field applications, p. 440R-68
13.1—FRP as internal reinforcement
13.2—Prestressing applications
13.3—External reinforcement
13.4—Masonry applications
13.5—Stay-in-place FRP forms

Chapter 14—Research needs, p. 440R-76
14.1—Introduction
14.2—Key research needs
14.3—Conclusions

Chapter 15—References, p. 440R-78
15.1—Referenced standards and reports
15.2—Cited references

CHAPTER 1—INTRODUCTION AND SCOPE
1.1—Introduction
The purpose of this report is to present the current state of knowledge with regard to applications of fiber-reinforced polymer (FRP) materials in concrete. This report summarizes the fundamental behavior, the most current research, design codes, and practical applications of concrete and masonry structures containing FRP. This document is intended to complement other reports (for example, standards and design guidelines) produced by ACI Committee 440, either
by summarizing the research that supports those documents or by providing information on future developments of those documents. If an ACI guide is available, the guide document supersedes information in this report, and the guide should always be followed for design and application purposes. ACI Committee 440 is also in the process of developing new guides; thus, the current availability of guides should be checked by the reader.

FRP materials are composite materials that typically consist of strong fibers embedded in a resin matrix. The fibers provide strength and stiffness to the composite and generally carry most of the applied loads. The matrix acts to bond and protect the fibers and to provide for transfer of stress from fiber to fiber through shear stresses. The most common fibers are glass, carbon, and aramid. Matrixes are typically epoxies, polyesters, vinylesters, or phenolics.

1.2—Historical perspective of FRP composites

While the concept of composites has been in existence for several millennia (for example, bricks made from mud and straw), the incorporation of FRP composite technology into the industrial world is less than a century old. The age of plastics emerged just after 1900, with chemists and industrialists taking bold steps to have plastics (vinyl, polystyrene, and Plexiglas) mimic and outdo natural materials. Spurred on by the needs of electronics, defense, and eventually space technology aircraft such as the F-117 Stealth Fighter and B-2 Bomber. Currently, FRP composites are being used for space applications and are involved in several NASA test initiatives (ACMA MDA 2006).

While the majority of the historical and durability data of FRP composite installations comes from the aerospace, marine, and corrosion-resistance industries (ACMA MDA 2006), FRP composites have been used as a construction material for several decades. FRP composite products were first demonstrated to reinforce concrete structures in the mid-1950s (ACMA MDA 2006). In the 1980s, a resurgence in interest arose when new developments were launched to apply FRP reinforcing bars in concrete that required special performance requirements such as nonmagnetic properties or in areas that were subjected to severe chemical attack.

Composites have evolved since the 1950s, starting with temporary structures and continuing with restoration of historic buildings and structural applications. Typical products developed were domes, shrouds, translucent sheet panels, and exterior building panels. A major development of FRP for civil engineering has been the application of externally bonded FRP for rehabilitation and strengthening of concrete structures.

During the late 1970s and early 1980s, many applications of composite reinforcing products were demonstrated in Europe and Asia. In 1986, the world’s first highway bridge using composite reinforcing tendons was built in Germany. The first all-composite bridge deck was demonstrated in China. The first all-composite pedestrian bridge was installed in 1992 in Aberfeldy, Scotland. In the U.S., the first FRP-reinforced concrete bridge deck was built in 1996 in McKinleyville, West Virginia, followed by the first all-composite vehicular bridge deck (The No-Name Creek Bridge in 1996) in Russell, Kansas. Numerous composite pedestrian bridges have been installed in U.S. state and national parks in remote locations not accessible by heavy construction equipment, or for spanning over roadways and railways (ACMA MDA 2006).