ACI 440.7R-10

Emerging Technology Series


Reported by ACI Committee 440

American Concrete Institute®

Copyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ACI.

The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities, omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionally find information or requirements that may be subject to more than one interpretation or may be incomplete or incorrect. Users who have suggestions for the improvement of ACI documents are requested to contact ACI. Proper use of this document includes periodically checking for errata at www.concrete.org/committees/errata.asp for the most up-to-date revisions.

ACI committee documents are intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. Individuals who use this publication in any way assume all risk and accept total responsibility for the application and use of this information.

All information in this publication is provided “as is” without warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement.

ACI and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of this publication.

It is the responsibility of the user of this document to establish health and safety practices appropriate to the specific circumstances involved with its use. ACI does not make any representations with regard to health and safety issues and the use of this document. The user must determine the applicability of all regulatory limitations before applying the document and must comply with all applicable laws and regulations, including but not limited to, United States Occupational Safety and Health Administration (OSHA) health and safety standards.

Order information: ACI documents are available in print, by download, on CD-ROM, through electronic subscription, or reprint and may be obtained by contacting ACI.

Most ACI standards and committee reports are gathered together in the annually revised ACI Manual of Concrete Practice (MCP).

American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331
U.S.A.
Phone: 248-848-3700
Fax: 248-848-3701

www.concrete.org


Reported by ACI Committee 440

Fiber-reinforced polymer (FRP) systems are an option to consider for strengthening unreinforced masonry (URM) structures. Traditional strengthening systems include external steel plates, reinforced concrete (RC) overlays, span shortening with steel subframing or bracing, and internal steel reinforcement. Relative to traditional systems, features of FRP systems include high tensile strength, light weight, ease of construction, and resistance to corrosion. This guide offers general information on FRP systems use, a description of their unique material properties, and recommendations for the design, construction, and inspection of FRP systems for strengthening URM structures. These guidelines are based on knowledge gained from a comprehensive review of experimental and analytical investigations and field applications.

Keywords: buildings; cracking; cyclic loading; detailing; earthquake resistance; fiber-reinforced polymers; fibers; flexure; masonry; shear; structural analysis; structural design; unreinforced.

ACI Committee Reports, Guides, Manuals, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.
CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction

Masonry is a generic term used to describe a type of construction where clay, or concrete masonry units, or natural stones are bonded together to form a load-bearing structure or a component in a structure. Non-load-bearing masonry includes partitions and veneers.

Although masonry is used in flexural applications such as retaining walls, roof and floor beams, and lintels, it is more frequently used in load-bearing walls primarily resisting compression loads. Reinforced and unreinforced masonry (URM) walls have been used in constructing structural load-bearing components. In buildings, masonry walls can serve effectively as part of the lateral load-resisting system to resist wind and earthquake loads. Infill masonry walls play a significant role in enhancing in-plane stiffness and shear resistance of both reinforced concrete (RC) and steel frames, if properly connected to the structural frame.