ACI 376M-11 (metric) # Code Requirements for Design and Construction of Concrete Structures for the Containment of Refrigerated Liquefied Gases and Commentary An ACI Standard Reported by ACI Committee 376 **American Concrete Institute®** ### Code Requirements for Design and Construction of Concrete Structures for the Containment of Refrigerated Liquefied Gases and Commentary Copyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ACI. The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities, omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionally find information or requirements that may be subject to more than one interpretation or may be incomplete or incorrect. Users who have suggestions for the improvement of ACI documents are requested to contact ACI via the errata website at www.concrete.org/committees/errata.asp. Proper use of this document includes periodically checking for errata for the most up-to-date revisions. ACI committee documents are intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. Individuals who use this publication in any way assume all risk and accept total responsibility for the application and use of this information. All information in this publication is provided "as is" without warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement. ACI and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of this publication. It is the responsibility of the user of this document to establish health and safety practices appropriate to the specific circumstances involved with its use. ACI does not make any representations with regard to health and safety issues and the use of this document. The user must determine the applicability of all regulatory limitations before applying the document and must comply with all applicable laws and regulations, including but not limited to, United States Occupational Safety and Health Administration (OSHA) health and safety standards. Participation by governmental representatives in the work of the American Concrete Institute and in the development of Institute standards does not constitute governmental endorsement of ACI or the standards that it develops. Order information: ACI documents are available in print, by download, on CD-ROM, through electronic subscription, or reprint and may be obtained by contacting ACI. Most ACI standards and committee reports are gathered together in the annually revised ACI Manual of Concrete Practice (MCP). American Concrete Institute 38800 Country Club Drive Farmington Hills, MI 48331 U.S.A. Phone: 248-848-3700 Fax: 248-848-3701 www.concrete.org ## Code Requirements for Design and Construction of Concrete Structures for the Containment of Refrigerated Liquefied Gases (ACI 376M-11) and Commentary #### An ACI Standard #### Reported by ACI Committee 376 Neven Krstulovic-Opara, Chair Piotr D. Moncarz, Secretary | e C. Hoff | Praveen K. Malhotra | Eric S. Thompson | |------------|--|--| | . Hoffmann | Keith A. Mash | Sheng-Chi Wu | | Iolleyoak | Stephen Meier | | | n Hoptay | Robert W. Nussmeier | Consulting members | | R. Howe | Rolf P. Pawski | Robert Arvedlund | | u Jiang | Ramanujam S. Rajan | James P. Lewis | | U. Khalifa | William E. Rushing Jr. | Terry Turpin | | A. Legatos | Robert W. Sward | | | | e C. Hoff A. Hoffmann Holleyoak n Hoptay s R. Howe u Jiang U. Khalifa A. Legatos | A. Hoffmann Keith A. Mash Holleyoak Stephen Meier Hoptay Robert W. Nussmeier S. R. Howe Rolf P. Pawski U. Khalifa William E. Rushing Jr. | Note: Special acknowledgment to Jeffrey Garrison for his contributions to this document. **Keywords:** bund wall; commissioning; cryogenic; damage stability; decommissioning; earthquake design levels; fatigue; float out; floating storage unit; foundation heating; gravity base structure; impact loads; liners; liquefied natural gas; liquid stratification; permanent ballast; purging; refrigerated liquefied gas; reinforcement (cryogenic); tanks; thermal corner protection. #### **CONTENTS** | NTRODUCTION | . 3 | |----------------------|-----| | CHAPTER 1—GENERAL | . 5 | | .1—Scope | .5 | | .2—Ouality assurance | .6 | ACI Committee Reports, Guides, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom. Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer. | 2.1 National Definitions | | |--|------| | 2.1—Notation | | | 2.2—Definitions | 8 | | CHAPTER 3—REFERENCED STANDARDS | 11 | | CHAPTER 3—REFERENCED STANDARDS | . 14 | | CHAPTER 4—MATERIALS | . 18 | | 4.1—Testing of materials | .18 | | 4.2—Cementitious materials | | | 4.3—Aggregates | .18 | | 4.4—Water | .19 | | 4.5—Admixtures | .19 | | 4.6—Fibers | .19 | | 4.7—Deformed reinforcement | .19 | | 4.8—Plate steel composite with concrete | .20 | | 4.9—Prestressed reinforcement | .21 | | 4.10—Prestressing anchorages | .21 | | 4.11—Post-tensioning ducts | .22 | | 4.12—Grout | .22 | | 4.13—Metal liners and nonstructural metal components | | | 4.14—Insulation | .23 | | 4.15—Coating requirements | 23 | ACI 376M-11 was adopted November 28, 2011, and was published August 2013. Copyright © 2013, American Concrete Institute. All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors. | 11.3—Shotcrete for external prestressing systems | 90 | |--|--| | 11.4—Post-tensioning | 91 | | 11.5—Winding of prestressed reinforcement: wire or | | | strand | | | 11.6—Forming | | | 11.7—Construction joints | | | 11.8—Concrete embedments | | | 11.9—Coatings | | | 11.10—Welding | 98 | | CHAPTER 12—COMMISSIONING/ | | | DECOMMISSIONING | 00 | | 12.1—Scope | | | 12.1—Scope | | | 12.3—Pressure and vacuum testing | | | 12.4—Purging into service | | | 12.5—Cool-down. | | | 12.6—Settlement and movement monitoring | | | 12.7—Liquefied natural gas tank fill methods | | | 12.8—Decommissioning: purging out of service and | 0) | | warm-up | 109 | | 12.9—Recordkeeping | | | 12.10—Nameplate | | | 1 | | | APPENDIX A—TANK CONFIGURATIONS, DET | AILS, | | AND EXAMPLES | 113 | | | | | RA.1—Tank configurations | 113 | | RA.2—Full-containment tanks: typical details | 113 | | | 113 | | RA.2—Full-containment tanks: typical details RA.3—Examples of base joint details | 113 | | RA.2—Full-containment tanks: typical details RA.3—Examples of base joint details | 113 | | RA.2—Full-containment tanks: typical details RA.3—Examples of base joint details | 113
113 | | RA.2—Full-containment tanks: typical details RA.3—Examples of base joint details | 113
113
124
124 | | RA.2—Full-containment tanks: typical details | 113
113
124
124
124 | | RA.2—Full-containment tanks: typical details RA.3—Examples of base joint details APPENDIX B—OFFSHORE CONCRETE TERMINALS B.1—Scope B.2—General B.3—Loads and load combinations | 113
113
124
124
125 | | RA.2—Full-containment tanks: typical details RA.3—Examples of base joint details APPENDIX B—OFFSHORE CONCRETE TERMINALS. B.1—Scope B.2—General B.3—Loads and load combinations. B.4—Concrete and reinforcement materials | 113
113
124
124
125
128 | | RA.2—Full-containment tanks: typical details | 113
113
124
124
125
128 | | RA.2—Full-containment tanks: typical details | 113
124
124
125
128 | | RA.2—Full-containment tanks: typical details | 113
124
124
125
128
129 | | RA.2—Full-containment tanks: typical details | 113
124
124
125
128
129 | | RA.2—Full-containment tanks: typical details | 113
113
124
124
125
128
129
131
132 | | RA.2—Full-containment tanks: typical details | 113
113
124
124
125
128
129
131
132
135 | | RA.2—Full-containment tanks: typical details | 113
113
124
124
125
128
129
131
132
135
135 | | RA.2—Full-containment tanks: typical details | 113
113
124
124
125
128
129
131
132
135
135 | | RA.2—Full-containment tanks: typical details | 113113124124125128129131132135135139139 | | RA.2—Full-containment tanks: typical details | 113
113
124
124
125
128
129
131
132
135
135
135 | | RA.2—Full-containment tanks: typical details RA.3—Examples of base joint details APPENDIX B—OFFSHORE CONCRETE TERMINALS. B.1—Scope B.2—General B.3—Loads and load combinations B.4—Concrete and reinforcement materials B.5—Global and local structural analysis B.6—Criteria and methodology of concrete sectional design B.7—Fatigue performance criteria B.8—Design considerations during construction, transportation, and installation B.9—Decommissioning B.10—Design for accidents APPENDIX C—FATIGUE PERFORMANCE C.1—Scope C.2—General | 113
113
124
124
125
128
129
131
132
135
135
135 | #### INTRODUCTION ACI Committee 376 was formed and subsequently ACI 376-11 was drafted in response to a request from the National Fire Protection Association (NFPA) Technical Committee 59A on liquefied natural gas (LNG). That committee is responsible for NFPA 59A, which is an internationally recognized standard governing the production, storage, and handling of LNG at an operating temperature of –168°C. NFPA 59A contains provisions for the use of reinforced concrete and prestressed concrete for two principal applications: 1) impoundment—secondary containment in conjunction with a metallic primary container; and 2) storage—primary containment. NFPA 59A is somewhat limited; it does not provide guidelines specifically tailored to concrete use at cryogenic temperatures. This limitation was the impetus for Committee 59A's request. Although the request was related specifically to containment of LNG, this code addresses concrete use for other refrigerated liquefied gas (RLG) as well, ranging in operating temperatures from +4 to –200°C. This makes the code and commentary analogous to the American Petroleum Institute's API 620, which governs design and construction of steel and aluminum RLG storage tanks to –168°C. The most common use of reinforced concrete and prestressed concrete in cryogenic storage applications is for secondary containment around metal primary storage tanks. Prestressed concrete primary containment tanks were built in North America and Europe from the 1960s through the 1980s. Renewed interest in the use of concrete for primary containment and the need for a code that addressed secondary concrete containment led to the development of this code, which includes pertinent excerpts from ACI 318M-11 and ACI 350M-06. The commentary includes considerations by the committee in developing the code. The commentary is not intended to provide a complete historical background concerning development of the code, nor is it intended to provide a detailed summary of the studies and research data reviewed by the committee in formulating its provisions. References to specific research data are provided for more in-depth study of the background materials. ACI 376M may be used as a part of a legally adopted code and, as such, must differ in form and substance from documents that provide detailed specifications, recommended practice, complete design procedures, or design aids. Requirements more stringent than the code provisions are desirable for unusual structures. This code and commentary cannot replace sound engineering knowledge, experience, and judgment. A code for design and construction states the minimum requirements necessary to provide for public health and safety. ACI 376M is based on this principle. For any structure, the owner and engineer may require the quality of materials and construction to be higher than the minimum requirements necessary to provide serviceability and to protect the public as stated in the code. Lower standards, however, are not permitted. ACI 376M has no legal status unless it is adopted by regulatory bodies. Where the code has not been adopted, it may serve as a reference to good practice. The code provides a means of establishing minimum standards for acceptance of design and construction by a legally appointed official or designated representative. The code and commentary are not intended for use in settling disputes between the owner, engineer, contractor, or their agents, subcontractors, material suppliers, or testing agencies. Therefore, the code cannot define the contract responsibility of each of the parties in typical construction. General references requiring compliance with ACI 376M in the job specifications should be avoided because the contractor is rarely in a position to accept responsibility for design details or construction requirements that depend on a detailed knowledge of the design. Generally, the contract documents should contain all of the necessary requirements to ensure compliance with the code. In part, this can be accomplished by reference to specific code sections in the job specifications. Other ACI publications, such as ACI 301M, are written specifically for use as contract documents for construction.