Design of Slabs-on-Ground
Reported by ACI Committee 360

Arthur W. McKinney
Chair

Robert B. Anderson
Vice Chair

Philip Brandt
Secretary

J. Howard Allred
Barry E. Foreman
Joseph F. Neuber, Jr.
A. Fattah Shaikh

Carl Bimel
Terry J. Fricks
Russell E. Neudeck
Richard E. Smith

Joseph A. Bohinsky
Patrick J. Harrison
Scott L. Niemitalo
Scott M. Tarr

William J. Brickey
Jerry A. Holland*
Nigel K. Parkes
R. Gregory Taylor

Joseph P. Buongiorno
Paul B. Lafontaine
Roy H. Reiterman
Eldon G. Tipping

Allen Face
Steven N. Metzger
John W. Rohrer
Wayne W. Walker

C. Rick Felder
John P. Munday

*Chair of ACI 360 who served during a portion of the time required to create this document.

ACI Committee Reports, Guides, Standard Practices, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document presents information on the design of slabs-on-ground, primarily industrial floors. The report addresses the planning, design, and detailing of slabs. Background information on design theories is followed by discussion of the types of slabs, soil-support systems, loadings, and jointing. Design methods are given for unreinforced concrete, reinforced concrete, shrinkage-compensating concrete, post-tensioned concrete, fiber-reinforced concrete slabs-on-ground, and slabs-on-ground in refrigerated buildings, followed by information on shrinkage and curling problems. Advantages and disadvantages of each of these slab designs are provided, including the ability of some slab designs to minimize cracking and curling more than others. Even with the best slab designs and proper construction, however, it is unrealistic to expect crack-free and curl-free floors. Consequently, every owner should be advised by both the designer and contractor that it is normal to expect some amount of cracking and curling on every project, and that such occurrence does not necessarily reflect adversely on either the adequacy of the floor’s design or the quality of its construction. Design examples appear in an appendix.

Keywords: concrete; curling; design; floors-on-ground; grade floors; industrial floors; joints; load types; post-tensioned concrete; reinforcement (steel, fibers); shrinkage; shrinkage-compensating; slabs; slabs-on-ground; soil mechanics; shrinkage; warping.

CONTENTS

Chapter 1—Introduction, p. 360R-3
1.1—Purpose and scope
1.2—Work of Committee 360 and other relevant committees
1.3—Work of non-ACI organizations
1.4—Design theories for slabs-on-ground
1.5—Overview of subsequent chapters
1.6—Further research

Chapter 2—Slab types, p. 360R-5
2.1—Introduction
2.2—Slab types
2.3—General comparison of slab types
2.4—Design and construction variables
2.5—Conclusion

Chapter 3—Support systems for slabs-on-ground, p. 360R-7
3.1—Introduction
3.2—Geotechnical engineering reports
3.3—Subgrade classification
3.4—Modulus of subgrade reaction
3.5—Design of slab-support system
3.6—Site preparation
3.7—Inspection and site testing of slab support
3.8—Special slab-on-ground support problems

ACI 360R-06 supersedes 360R-92 (Reapproved 1997) and became effective August 9, 2006.
Copyright © 2006, American Concrete Institute.
All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.