An ACI Standard

Qualification of Post-Installed Adhesive Anchors in Concrete (ACI 355.4-19) and Commentary

Reported by ACI Committee 355
Qualification of Post-Installed Adhesive Anchors in Concrete (ACI 355.4-19) and Commentary

An ACI Standard

Reported by ACI Committee 355

Lee W. Mattis
Chair

Monzer M. Allam
Neal S. Anderson
Jacques A. Bertrand
T. J. Bland
Peter J. Carrato
Harry A. Chambers*
Ronald A. Cook
Rolf Elighausen
Werner A. F. Fuchs
Branko Galunic
Brian C. Gerber
Herman L. Graves
Andra Hoermann-Gast
Brent E. Hungerford
Amy S. Koleczak
Thomas A. Kolden
Anthony J. Lamanna
Nam-Ho Lee
Robert R. McGilhn
Giovanni Muciaccia
Jake Olsen
John E. Pearson
Milton Rodriguez
John F. Silva
Howard Silverman
Patrick J. E. Sullivan
J. Bret Turley
Curtis R. Yojoyama
Jian Zhao

Consulting members
Edwin G. Burdette
Robert W. Cannon
Neil M. Hawkins
Paul R. Hollenbach
Conrad Paulson
Dan R. Stoppenhagen
Harry Wiewel*

*Deceased.

This standard prescribes testing programs and evaluation requirements for post-installed adhesive anchors intended for use in concrete under the design provisions of ACI 318. Testing and assessment criteria are provided for various conditions of use, including seismic loading; sustained loading; aggressive environments; reduced and elevated temperatures; and for determining whether anchors are acceptable for use in uncracked concrete only, or acceptable for service both in cracked and uncracked concrete. Criteria are provided for establishing the characteristic bond strength, reductions for adverse conditions, and the anchor category and associated job-site quality control requirements.

Keywords: adhesive anchors; cracked concrete; fasteners; post-installed anchors; qualification procedures; uncracked concrete.

ACI Committee Reports, Guides, Manuals, and Commentaries

ACI 355.4-19 superseded ACI 355.4-11, was adopted December 2, 2019, and published January 2020.

Copyright © 2020, American Concrete Institute.

All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
Chapter 4—Requirements for test specimens, anchor installation, and testing, p. 18
4.1—Testing by ITEA and manufacturer
4.2—Test samples
4.3—Concrete for test members
4.4—Requirements for test members
4.5—Anchor installation
4.6—Drill bit requirements
4.7—Test methods
4.8—Tests in cracked concrete
4.9—Changes to products

Chapter 5—Requirements for anchor identification, p. 25
5.1—Basic requirements
5.2—Verification
5.3—Fingerprinting adhesive materials
5.4—Packaging

Chapter 6—Reference tests, p. 25
6.1—Purpose
6.2—Required tests
6.3—Conduct of tests

Chapter 7—Reliability tests, p. 26
7.1—Purpose
7.2—Required tests
7.3—Conduct of tests
7.4—Reliability tests
7.5—Sensitivity to hole cleaning—dry concrete
7.6—Sensitivity to hole cleaning—saturated concrete
7.7—Sensitivity to hole cleaning—water-filled hole
7.8—Sensitivity to hole cleaning—submerged concrete
7.9—Sensitivity to mixing effort
7.10—Sensitivity to installation in water-saturated concrete
7.11—Sensitivity to installation in water-filled hole—saturated concrete
7.12—Sensitivity to installation in submerged concrete
7.13—Sensitivity to crack width—low-strength concrete
7.14—Sensitivity to crack width—high-strength concrete
7.15—Sensitivity to crack width cycling
7.16—Sensitivity to freezing and thawing
7.17—Sensitivity to sustained loading at standard and maximum long-term temperature
7.18—Sensitivity to installation direction
7.19—Torque test

Chapter 8—Service-condition tests, p. 33
8.1—Purpose
8.2—Required tests
8.3—Conduct of tests
8.4—Tension tests in uncracked and cracked concrete
8.5—Tension tests at elevated temperature
8.6—Tension tests with decreased installation temperature
8.7—Establishment of cure time at standard temperature
8.8—Durability assessment
8.9—Verification of full concrete capacity in a corner
8.10—Determination of minimum spacing and edge distance to preclude splitting
8.11—Tests to determine shear capacity of anchor elements with nonuniform cross section
8.12—Simulated seismic tension tests
8.13—Simulated seismic shear tests

Chapter 9—Supplemental tests, p. 39
9.1—Round-robin tests
9.2—Tests to determine minimum member thickness

Chapter 10—Assessment of anchors, p. 40
10.1—Analysis of data
10.2—Normalization of anchor capacities for measured concrete bond and steel strengths
10.3—Establishing characteristic values
10.4—Assessment of characteristic tension capacity associated with concrete breakout and pullout
10.5—Assessment of steel tension capacity
10.6—Assessment of steel shear capacity
10.7—Assessment of minimum member thickness
10.8—Assessment of maximum tightening torque
10.9—Assessment of behavior under crack cycling
10.10—Assessment of freezing-and-thawing behavior
10.11—Assessment of sustained load behavior
10.12—Assessment of performance associated with installation direction
10.13—Assessment of performance at elevated temperature
10.14—Assessment of performance with decreased installation temperature
10.15—Assessment for cure time at standard temperature
10.16—Assessment of durability requirement
10.17—Assessment of performance in corner test
10.18—Assessment of performance in minimum spacing and edge distance test
10.19—Assessment of performance under seismic tension
10.20—Assessment of performance under seismic shear
10.21—Establishment of hole cleaning procedures
10.22—Establishment of on-site quality control and installation conditions
10.23—Assessment based on installation and environmental conditions
10.24—Assessment for fire exposure

Chapter 11—Data presentation, p. 52
11.1—General requirements
11.2—Contents of evaluation report
11.3—Data presentation

Chapter 12—Independent testing and evaluation agency requirements, p. 54
12.1—General requirements
12.2—Certification

Chapter 13—Quality control requirements, p. 55
13.1—Quality assurance program
13.2—Quality control manuals
13.3—Special inspection

Chapter 14—References, p. 55
14.1—Referenced standards and reports
14.2—Cited references
1.1—Introduction

This standard prescribes testing and evaluation requirements for post-installed adhesive anchor systems intended for use in concrete under the provisions of ACI 318. Criteria are separately prescribed to determine the suitability of adhesive anchors used in uncracked concrete only, or in both cracked and uncracked concrete. Criteria are prescribed to determine the design parameters and performance category for adhesive anchors. Included are assessments of the adhesive anchor system for bond strength, reliability, service conditions, and quality control. Special inspection (13.3) is required during anchor installation as noted in 10.22. Table 1.1 provides an overview of the scope.

R1.1 This standard prescribes the testing programs required to qualify post-installed adhesive anchor systems for design in accordance with ACI 318, Chapter 17. Chapter 17 requires that anchors be tested either for use exclusively in uncracked concrete or for use in cracked and uncracked concrete conditions, whereby it is understood that the presence of cracking may occur at any time over the service life of the anchors. Test and assessment criteria are provided for various conditions, including loads (seismic and sustained), environmental with regard to humidity and temperature, and determination if anchors are acceptable for use in cracked or uncracked concrete. Refer to Cook and Konz (2001) for a review of factors that influence adhesive anchor behavior. Refer to Fuchs et al. (1995) for background on the concrete breakout design model and to Eligehausen et al. (2006) and Zamora et al. (2003) for a discussion of bond models for adhesive and grouted anchors. For a discussion of issues associated with the qualification and design of systems for post-installed reinforcing bars, refer to Spieth et al. (2001).

1.2—Scope

This standard applies only to post-installed adhesive anchors as defined herein.

R1.2 Adhesive anchors resist tension loads with a combination of adhesion and mechanical bond (micro-interlock). Different anchor designs and adhesive types may exhibit a range of performance characteristics. In particular, the sensitivity of adhesive anchors to variations in installation and service-condition parameters (such as hole cleaning, installation orientation, and cracked concrete characteristics) may vary widely from each system. ACI 318 addresses this situation by matching capacity reduction factors to anchor performance categories that are, in turn, established through a series of reliability tests.

R1.2.1 The minimum diameter of 1/4 in. is based on practical considerations regarding the limit of structural anchor applications. The upper limit on the ratio of hole diameter to anchor element diameter provides a demarcation between conditions where a single bond strength can be used to evaluate anchor strength and conditions where bond strengths at both the anchor interface and concrete interface must be determined to evaluate anchor strength. In addition, the value of 1.5da is based on consideration of typical practice whereby most organic adhesives are used with thin bond lines to limit both adhesive shrinkage and creep of the anchor when under load. The design method deemed to satisfy the anchor design requirements of ACI 318, Chapter 17, is based on an analysis of an anchor database with a maximum diameter of 2 in. While ACI 355.4 gives no limitations on maximum anchor diameter, for anchors beyond this dimension, the testing authority should decide if the tests described in this standard are applicable or if alternative tests and analyses are more appropriate. It may also be desirable to reconsider those tests where only small, medium, and large diameters are tested when the upper diameter is much larger than 1-1/2 in.

A limitation on the minimum embedment length of adhesive anchors is necessary to ensure conformance with the design method deemed to satisfy the anchor design requirements of ACI 318, Chapter 17.

1.2.2 The minimum member thickness shall not be less than the value given by Eq. (10-21). Values of Δψ in Eq. (10-21) shall be permitted if they are verified by tests according to Table 3.1, Test no. 14, and Table 3.2, Test no. 20, or Table 3.3, Test no. 15.

1.2.3 This standard does not address the following systems and use conditions:

1. Bulk adhesives mixed in open containers without automatically controlled metering and mixing of adhesive components.
2. Adhesives to adhere structural elements to concrete surfaces outside of a drilled hole.
3. Adhesive anchors in aggressive environments not specifically considered in this standard.
4. Adhesive anchors to resist fatigue or shock loading.
5. Injection-type adhesive anchor systems for horizontal and upwardly inclined installations that do not employ a piston plug or similar device to provide back pressure during the adhesive injection process.

R1.2.3 Correct proportioning (metering) and mixing of adhesive components is critical to their performance. Bulk mixing and delivery of adhesives (for example, those with paddle mixers in buckets), while appropriate for some applications, may not provide anchor performance consistent with the assumptions of this standard. These systems are not considered to provide controlled metering of adhesive components. Bulk dispensing equipment that provides...
automatic metering and mixing of the adhesive components is included; however, ongoing monitoring is required to check that the equipment is operating within tolerances in accordance with the Manufacturer’s Printed Installation Instructions (MPII), particularly with respect to mixture ratios, leak tightness, and dwell time.

This standard is not appropriate for assessing the use of adhesives to adhere structural elements to the concrete surface. Examples include bonded steel plates or external carbon fiber reinforcement. Other standards exist for these purposes. This standard includes tests to assess the sensitivity of adhesive anchor systems to a limited range of aggressive environments, including moisture, highly alkaline fluids, and sulfur dioxide.

While it is believed that these exposure environments envelop a range of possible exposures, specific environments (for example, radiation exposure and chemical production environments) may require unique assessment.

Due to the variety of possible loading conditions associated with fatigue and shock loading, this standard does not include tests for these loading variants. Fatigue and shock loading may result in reductions in bond strength, steel strength, and concrete strength, and these effects are not addressed by this standard. Caution should be exercised in the determination of whether cyclic loading should be explicitly considered. These conditions may be evaluated separately for specific systems using generally accepted principles. Fatigue is generally less of a problem for the adhesive than for the anchor element; provisions of preload in the anchor to reduce the level of stress fluctuation in the anchor element is only effective if sufficient unbonded length is provided to ensure a reasonable degree of elastic stretch. Void-free injection of adhesive is critical for the performance of adhesive anchors, particularly for cases involving sustained tension load. This standard includes several criteria for assessing the effectiveness of the adhesive anchor injection system. Nevertheless, the injection of adhesive into horizontal and upwardly inclined holes presents special challenges. The collapse of a tunnel ceiling in Boston, Massachusetts in 2006 highlights this issue. NTSB (2006) documented improper installation of the adhesive based on observation of failed anchors and anchors adjacent to the collapsed section. Subsequent laboratory investigations confirmed these findings, see Ocel and Hartmann (2007). The piston plug was developed to minimize injected air voids (see Fig. 2.2). Laboratory investigations (Silva 2016) indicate that injection of adhesive with only an extension tube, i.e., without the use of a device such as a piston plug to provide back pressure during the injection process, does not result in a sufficient degree of reliability in the installation process. The use of a piston plug during the injection process consistently results in good installation. For small hole diameters (1/4-in. to 3/8-in.), the same effect is accomplished when the extension tube diameter equals the hole diameter.

Consequently, the injection of adhesive in the horizontal or upwardly inclined direction without the use of a piston plug or similar back-pressure device to avoid air voids is no longer included in the scope of this Standard. It is also important to note that the use of the piston plug for proper