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This report presents to industry practitioners the various design 
criteria and methods and procedures of analysis, design, and 
construction applied to foundations for dynamic equipment.

Keywords: amplitude; foundation; reinforcement; vibration.
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CHAPTER 1—INTRODUCTION

1.1—Background
Machinery with rotating, reciprocating, or impacting 

masses requires a foundation that can resist dynamic forces. 
Precise machine alignment should be maintained, and foun-
dation vibrations should be controlled to ensure proper func-
tioning of the machinery during its design service life.

Successful design of such foundations for dynamic equip-
ment involves close collaboration and cooperation among 
machine manufacturers, geotechnical engineers, engineers, 
owners, and construction personnel. Because different 
manufacturers may have very different foundation accep-
tance criteria and their own practices with regards to foun-
dation design requirements, strict adherence to ACI 318 
alone may not be necessarily appropriate for certain foun-
dations that support heavy industrial equipment, such as 
steam turbine generators, combustion turbine generators, or 

compressors. In addition, different practicing engineering 
firms may use design approaches based on past successful 
performance of foundations, even though these may not 
be the most economical designs. Therefore, this report 
summarizes current design practices to present a common 
approach, in principle, for various types of concrete founda-
tions supporting dynamic equipment.

Compared to the previous edition, this document has been 
reorganized to make the document more systematic and 
user-friendly. More detailed information on the following 
subjects has been added on the behavior of foundations 
subjected to dynamic machine forces:

a) Impedance of the supporting medium (both soil-
supported and pile-supported foundations)

b) General overview of vibration analysis (including 
finite-element modeling) and acceptance criteria, including 
finite-element analysis

c) Determination of various soil properties required for 
dynamic analysis of machine foundations

Example problems have been reworked and improved 
with some additional details to better illustrate the imple-
mentation of the calculation procedure in a manual calcula-
tion. Latest relevant references have been added to capture 
the current practice.

1.2—Purpose
The purpose of this report is to present general guidelines and 

current engineering practices in the analysis and design of rein-
forced concrete foundations supporting dynamic equipment.

This report presents and summarizes, with reference 
materials, various design criteria, methods and procedures 
of analysis, and construction practices currently applied to 
dynamic equipment foundations by industry practitioners.

1.3—Scope
This document is limited in scope to the engineering, 

construction, repair, and upgrade of concrete foundations 
for dynamic equipment. For the purposes of this document, 
dynamic equipment includes the following:

a) Rotating machinery
b) Reciprocating machinery
c) Impact or impulsive machinery
ACI 351.1R provides an overview of current design prac-

tice on grouting. Design practices for foundations supporting 
static equipment are discussed in ACI 351.2R.

There are many technical areas that are common to both 
dynamic equipment and static equipment foundations. 
Various aspects of the analysis design and construction 
of foundations for static equipment are addressed in ACI 
351.2R. To simplify the presentation, this report is limited in 
scope to primarily address the design and material require-
ments that are pertinent only to dynamic equipment foun-
dations. Engineers are advised to refer to ACI 351.2R for 
more information on the foundation design criteria (static 
loadings, load combinations, design strength, stiffness, and 
stability) and design methods for static loads. In particular, 
ACI 351.2R provides detailed coverage on the design of 
anchorage of equipment to concrete foundations. Note that 
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ACI 351.2R was published prior to a major revision to ACI 
318 and some of the section numbers that it references in 
ACI 318 may have changed.

CHAPTER 2—NOTATION AND DEFINITIONS

2.1—Notation
A = steady-state vibration amplitude, in. (mm)
Ahead,
Acrank = head and crank areas, in.2 (mm2)
Ap = cross-sectional area of the pile, in.2 (mm2)
a, b = plan dimension of a rectangular foundation, ft (m)
ao = dimensionless frequency
Bc = cylinder bore diameter, in. (mm)
Bi = mass ratio for the i-th direction
Bmf = machine footprint width, ft (m)
BM = width of mat foundation, ft (m)
Br = ram weight, tons (kN)
b1, b2  = constants 0.425 and 0.687, respectively
C = damping coefficient or total damping at center of 

resistance
[C] = damping matrix
CCR = critical damping coefficient
Ci1,Ci2 = dimensionless stiffness and damping parameters, 

subscription i = u, v, ψ, η
c = viscous damping constant, lbf-s/ft (N-s/m)
ci = damping constant for the i-th direction
ci(adj) = adjusted damping constant for the i-th direction
cij = equivalent viscous damping of pile j in the i-th 

direction
CG = center of gravity
CF = center of force
cgi = pile group damping in the i-th direction
D = damping ratio
Di = damping ratio for the i-th direction
Drod = rod diameter, in. (mm)
d = pile diameter, in (mm)
ds = displacement of the slide, in. (mm)
dmf = distance from machine shaft centerline to top of 

foundation, ft (m)
E = static Young’s modulus of concrete, psi (MPa)
Ed = dynamic Young’s modulus of concrete, psi (MPa)
Ep = Young’s modulus of the pile, psi (MPa)
em = mass eccentricity, in. (mm)
F = peak value of harmonic dynamic load (force or 

moment)
F1 = correction factor
Fblock = force acting outward on the block from which 

concrete stresses should be calculated, lbf (N)
(Fbolt)CHG = force to be restrained by friction at the crosshead 

guide tie-down bolts, lbf (N)
(Fbolt)frame = force to be restrained by friction at the frame 

tie-down bolts, lbf (N)
FD = damper force, lbf (N)
FGMAX = maximum horizontal gas force on a throw or 

cylinder, lbf (N)
FIMAX = maximum horizontal inertia force on a throw or 

cylinder, lbf (N)

FK = force in vibration isolator spring, lbf (N)
Fo = dynamic force amplitude (zero-to-peak), lbf (N)
Fpl = lateral/longitudinal pseudo-dynamic design force, 

lbf (N)
Fpv = vertical pseudo-dynamic design force, lbf (N)
Fr = maximum horizontal dynamic force, lbf (N)
Fred = force reduction factor to account for the fraction of 

individual cylinder load carried by the compressor 
frame (frame rigidity factor)

Frod = force acting on piston rod, lbf (N)
Fs = dynamic inertia force of slide, lbf (N)
FTHROW= horizontal force to be resisted by each throw’s 

anchor bolts, lbf (N)
F(t) = generic representation of time-varying load (force 

or moment) horizontal
Funbalance = maximum value applied using parameters for a 

horizontal compressor cylinder, lbf (N)
fc′ = specified concrete compressive strength, psi (MPa)
fi1, fi2  = dimensionless pile stiffness and damping functions 

for the i-th direction
fo = operating speed, rpm
G, G* = dynamic shear modulus of the soil, psi (MPa)
GpJ = torsional stiffness of the pile, lbf-ft2 (N-m2)
Gs = dynamic shear modulus of the embedment (side) 

material, psi (MPa)
H = depth of soil layer, ft (m)
Ig = gross area moment of inertia, in.2 (mm2)
Ip = moment of inertia of the pile cross section in.4 

(mm4)
i = √–1
i = directional indicator or modal indicator, as a 

subscript
K = stiffness or total stiffness at center of resistance, lbf/

ft (N/m) or lbf-ft/rad (N-m/rad)
[K] = stiffness matrix
K′	 = total stiffness at center of gravity, lbf/ft (N/m) or 

lbf-ft/rad (N-m/rad)
Kij

* = impedance in the i-th direction due to a displace-
ment in the j-th direction

KN = actual negative stiffness, lbf/ft (N/m) or lbf-ft/rad 
(N-m/rad)

KP = arbitrary chosen positive stiffness value (typically 
set equal to the static stiffness), lbf/ft (N/m) or 
lbf-ft/rad (N-m/rad)

Keff = effective bearing stiffness, lbf/in. (N/mm)
Ks = static soil stiffness, lbf/in3 (N/m3)
Kc

G = pile group coupling impedance
Kh

G = pile group horizontal impedance
Kv

G = pile group vertical impedance
Kψ

G = pile group rocking impedance
k = individual pile stiffness at center of resistance, lbf/

ft (N/m) or lbf-ft/rad (N-m/rad)
kei

* = impedance in the i-th direction due to embedment
kgi = pile group stiffness in the i-th direction, lbf/ft (N/m) 

or lbf-ft/rad (N-m/rad)
ki = static stiffness for the i-th direction, lbf/ft (N/m) or 

lbf-ft/rad (N-m/rad)
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ki
* = frequency-dependent impedance in the i-th 

direction
ki(adj) = adjusted static stiffness for the i-th direction, lbf/ft 

(N/m) or lbf-ft/rad (N-m/rad)
ki

*(adj)= adjusted frequency-dependent impedance in the 
i-th direction

kij = stiffness of pile j in the i-th direction, lbf/ft (N/m) or 
lbf-ft/rad (N-m/rad)

kij
st = static stiffness of an individual pile j in the i-th 

direction, lbf/ft (N/m) or lbf-ft/rad (N-m/rad)
ks = soil modulus of subgrade reaction, lbf/in3 (N/m3)
kst = static stiffness constant
ku

* = horizontal impedance of supporting medium
kv

* = vertical impedance of supporting medium
kψ

* = rocking impedance of supporting medium
kη

* = torsional impedance of supporting medium
k(ω) = frequency (ω)-dependent dynamic impedance
L = length of connecting rod, in. (mm)
LM = greater plan dimension of the mat foundation, ft 

(m)
Lmf = machine footprint length, ft (m)
LP = lateral distance from center of resistance to indi-

vidual piles, ft (m)
l = depth of embedment, ft (m)
lp = pile length, ft (m)
M = mass, lbm (kg)
[M] = mass matrix
Mh = hammer mass, including any auxiliary foundation, 

lbm (kg)
Mo = overturning moment on foundation, lbf-ft (N-m)
MR = mass ratio of concrete foundation to machine
Mr = ram mass, including dies and ancillary parts, lbm 

(kg)
Mres = foundation overturning resistance, lbf-ft (N-m)
M∆ = added mass, lbm (kg)
m = mass of the machine-foundation system; lbm (kg)
md = slide mass including the effects of any balance 

mechanism, lbm (kg)
mr = rotating mass, lbm (kg)
mrec = reciprocating mass in a reciprocating machine, lbm 

(kg)
mrot = rotating mass in a reciprocating machine, lbm (kg)
ms = added mass (inertial), lbm (kg)
N = number of piles
(Nbolt)CHG = number of bolts holding down one cross-

head guide
(Nbolt)frame = number of bolts holding down the frame, per 

cylinder
NT = normal torque, lbf-ft (N-m)
PALL = allowable bearing pressure, ksf (kPa)
Phead,
Pcrank = instantaneous head and crank pressures, psi (MPa)
Pmax = maximum bearing pressure, ksf (kPa)
Ps = power being transmitted by the shaft at the connec-

tion, horsepower (kilowatts)
R = circular foundation radius, equivalent translation 

radius of rectangular foundation, ft (m)
Ri = equivalent radius of rectangular foundation, ft (m)

Rψa, Rψb = equivalent rocking radius of foundation about a- 
and b-axis, respectively, ft (m)

Rη = equivalent torsional radius of foundation, ft (m)
r = length of crank, in. (mm)
ri = radius of the crank mechanism of the i-th cylinder, 

in. (mm)
ro = pile radius or equivalent radius, in. (mm)
S = press stroke, in. (mm)
Sall = allowable foundation settlement, in. (mm)
Sf = service factor, used to account for increasing unbal-

ance during the design service life of the machine
Si1, Si2 = dimensionless stiffness and damping parameters 

for side layer, subscription i = u, v, ψ, η
Smax = maximum foundation settlement, in. (mm)
SVR = seismic shear force due to the rigid foundation and 

other rigid components, lbf (N)
SVs = seismic shear force due to the superstructure, 

machine and other flexible components, lbf (N)
SVseismic= total seismic shear force machine-foundation 

system, lbf (N)
s = pile center-to-center spacing, ft (m)
[T] = transfer matrix
TM = mat foundation thickness, ft (m)
Tmin = minimum required anchor bolt tension, lbf (N)
t = time, s
u = displacement amplitude, in. (mm)
u0 = peak displacement amplitude, in. (mm)
Vc = compressive velocity of a pile, ft/s (m/s)
VF = transmissibility factor
VLa = Lysmer’s analog wave velocity, ft/second (m/s)
Vmax = maximum allowable bearing vibration, in. (mm)
Vpeak = peak velocity, in./s (mm/s)
VRMS = root mean square velocity, in./s (mm/s)
Vs = shear wave velocity of the soil, ft/s (m/s)
vh = post-impact hammer velocity, in./s (mm/s)
vo = reference velocity = 18.4 ft/s (5.6 m/s) from a free 

fall of 5.25 ft (1.6 m)
vr = ram impact velocity, ft/s (m/s)
Wa = equipment weight at anchorage location, lbf (N)
Wf = weight of the foundation, tons (kN)
Wm = machine weight, tons (kN)
Wr = rotating weight, lbf (N)
y = generic representation of displacement (transla-

tional or rotational), in. (mm) or rad
y′ (ÿ) = generic representation of velocity (translational or 

rotational), in./s (mm/s) or rad/s
y′′ (ÿ) = generic representation of acceleration (translational 

or rotational), in./s2 (mm/s2) or rad/s2

yc = crank pin displacement in local y-axis, or distance 
from the center of gravity to the base support, in. 
(mm)

ye = distance from the center of gravity to the level of 
embedment resistance, ft (m)

zc = crank pin displacement in local z-axis, in. (mm)
zp = piston displacement, in. (mm)
α = angle between battered piles and vertical piles, rad
αh = ram rebound velocity to impact velocity ratio
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αi = pile dynamic interaction factor in the i-th direction, 
subscription i = z (axial), HH (horizontal), MM (in 
phase rocking), MH (sway rocking)

αj = coefficients, j = 1
βi = rectangular footing coefficient for the i-th direction
βj, γj = coefficients, j = 1 to 4
βm = material damping ratio
γc = concrete density, lbf/ft3 (kN/m3)
ϕ = phase angle
{ϕ} = mode shape vector
ϕi = mode shape factor
η = tuning ratio
θ = phase angle, or angle between the direction of load 

action and the plane in which piles lie, rad
ρ = soil mass density, lbm/ft3 (kg/m3)
ρp = pile mass density, lbm/ft3 (kg/m3)
∆ = peak amplitude (translational or rotational), in. or 

rad
μ = coefficient of friction
ν = Poisson’s ratio of the soil
ω = circular frequency of motion, rad/s
ωd = damped circular natural frequency, rad/s
ωi = undamped circular natural frequency for the i-th 

mode, rad/s
ωn = undamped circular natural frequency, rad/s
ωo = circular operating frequency of a machine or other 

driving force, rad/s
ωsu, ωsv = circular natural frequencies of a soil layer in hori-

zontal (u) and vertical (v) directions, rad/s
u, v,
ψ, η = subscriptions used for notating horizontal, vertical, 

rocking, and torsional direction, respectively

2.2—Definitions
Please refer to the latest version of ACI Concrete Termi-

nology for a comprehensive list of definitions. Definitions 
provided herein complement that resource.

root cause analysis—collective term that describes a wide 
range of approaches, tools, and techniques used to uncover 
causes of problems.

CHAPTER 3—FOUNDATION AND MACHINE TYPES

3.1—General considerations
The type, configuration, and installation of a foundation or 

support structure for dynamic machinery may depend on the 
following factors:

a) Site conditions such as soil characteristics, topography, 
seismicity, climate, and other effects

b) Machine base configuration such as frame size, cylinder 
supports, pulsation bottles, drive mechanisms, and exhaust 
ducts

c) Process requirements such as elevation requirements 
with respect to connected process equipment and support 
requirements for piping

d) Anticipated loads such as the equipment static weight, 
along with loads developed during construction, startup, 
operation, shutdown, and maintenance

e) Allowable amplitudes of vibration associated with each 
dynamic load case

f) Construction requirements such as limitations or 
constraints imposed by construction equipment, procedures, 
techniques, or the sequence of construction

g) Operational requirements such as accessibility, settle-
ment limitations, temperature effects, and drainage

h) Maintenance requirements such as temporary access, 
laydown space, in-plant crane capabilities, and machine 
removal considerations

i) Regulatory factors, owner requirements, or building 
code provisions such as tied pile caps in seismic zones

j) Economic factors such as capital cost, useful or design 
service life, and replacement or repair cost

k) Environmental requirements such as secondary contain-
ment or special concrete coating requirements

l) Recognition that certain machines, particularly large 
reciprocating compressors, rely on the foundation to add 
strength and stiffness that is not inherent in the structure of 
the machine

3.2—Machine types
3.2.1 Rotating machinery—This category includes 

gas turbines, steam turbines, and other expanders; turbo-
pumps and compressors; fans; motors; and centrifuges. 
These machines are characterized by the motion of rotating 
components.

Unbalanced forces in rotating machines are created when 
the mass centroid of the rotating component does not coincide 
with the center of rotation (Fig. 3.2.1). This dynamic force 
is a function of the mass of the rotating component, speed of 
rotation, and the magnitude of the eccentricity of offset. The 
offset or eccentricity should be minor under manufactured 
conditions when the machine is well balanced, clean, and 
without wear or erosion. Changes in alignment, operation 
near resonance, turbine blade loss, and other malfunctions or 
undesirable conditions can greatly increase the force applied 
to its bearings by the rotor.

3.2.2 Reciprocating machinery—For reciprocating 
machinery, such as compressors or diesel engines, a piston 
moving in a cylinder interacts with a gas through the kine-
matics of a slider crank mechanism driven by, or driving, 
a rotating crankshaft. Individual inertia forces from each 
cylinder are inherently unbalanced with dominant frequencies 
at one and two times the rotational frequency (Fig. 3.2.2).

Fig. 3.2.1—Rotating machine diagram.
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constrained and transmitted smoothly from the machine 
down through the foundation and into the soil below. When 
the symptoms are high vibration of the equipment, cracked 
concrete and grout, anchorage failure, or foundation rocking, 
the causes could be one or more of the following:

a) Incorrect original calculation of the projected magni-
tude of the dynamic forces, or a change in magnitude after a 
mechanical repair. Note that sometimes a very small change 
in a rotating part’s weight can cause large increases in vibra-
tory forces.

b) A change in operating speed can increase dynamic forces
c) A tall narrow foundation, made only as wide as the foot-

print of the machine
Often the minimum width and length supplied by the orig-

inal equipment manufacturer (OEM) will have more rocking 
around the horizontal axis than a shorter, wider foundation. 
An OEM suggested concrete outline should only be a guide 
to minimum size. The OEM is not the foundation designer, 
and it is the engineer of record’s responsibility to provide the 
best width-to-height ratio to help control rocking. Excessive 
rocking can be reduced in an existing foundation by adding 
vertical post-tension bolts (9.2.3(a)) and by adding founda-
tion mass (9.2.3(e)). However, a revised vibration analysis 
with new parameters needs to be conducted to verify vibra-
tion levels and design allowable. When applicable, soil-
structure interaction effects need to be included in the revised 
vibration analysis, as discussed in Chapter 5. Moreover, a 
parametric study would be beneficial to determine optimum 
values for bolt tension or additional foundation mass.

For any repair options, concrete foundation problems 
caused by equipment vibration can worsen over time as the 
equipment foundation deteriorates and causes an increase 
in equipment vibratory forces. These increased equipment 
forces may further deteriorate the dynamic equipment foun-
dation with potential for further cracking of the concrete 
foundation and loosening of anchor bolts. This results in 
even further increases in vibratory forces. This cycle of 
degradation phenomenon continues as time progresses, 
demonstrating that an early and timely repair is always 
warranted for a dynamic machine foundation.

9.2.3 Tools and techniques for machine foundation 
repair—A variety of tools and techniques exist that may be 
applicable to the repair of a foundation that has deteriorated 
due to the problems described previously. The tools and 
techniques are described in the following:

a) Drill and install vertical post-tension bolts completely 
through the cracked sections and often down to an under-
lying concrete mat foundation or pile cap.

b) After partial or complete removal of the concrete and 
grout in the upper one-third of the foundation, replace it with 
a dense reinforcing bar grid of 1 percent (No. 6s [No. 19] on 
6 in. [150 mm] centers in 6 in. [150 mm] vertical layers), 
and replace with a stronger concrete such as a steel fiber-
reinforced polymer-modified concrete (PMC).

PMC (ACI 548.3R) is considered because the repair is 
being made, in most cases, from a degraded foundation or an 
inadequate original foundation design. A stronger concrete is 
beneficial in such situations. PMC is stronger in tensile and 

flexural strength, develops a better bond and adhesion to the 
original concrete, and develops less heat of hydration than 
ready mixed concrete.

Material selection for concrete repair is an important step. 
ACI 546R and ACI 546.3R provide guidelines for material 
selection of concrete repairs.

c) Upgrade the anchor bolts from typical 36,000 psi (248 
MPa) lower-strength steel to higher-strength alloy steel, such 
as ASTM A193/A193M, Grade B7, with rolled threads. This 
material has minimum tensile strength of 125,000 psi (860 
MPa) and minimum yield strength of 105,000 psi (720 MPa) 
for rods of various diameters (ACI 355.3R-11 Appendix A). 
The increased clamping force transfers the vibratory forces 
more efficiently into the foundation.

d) Add horizontal post-tensioning both ways in the upper 
one-third of the foundation. Earlier repair techniques used 
steel bolts to accomplish this, but newer techniques have 
been developed using closely spaced post-tensioned cables 
because of lower cost and ease of installation in a dense rein-
forcing bar grid. This technique is beneficial when severe 
vertical cracks exist.

e) Make changes to the concrete mass by increasing the 
horizontal width, length, or both, of the concrete where 
possible without equipment interference.

f) The connection between the equipment and the foun-
dation is a critical point in providing a smooth path of the 
equipment vibratory forces down into the concrete foundation 
and into the soil or bedrock below. The improved anchorage 
suggested in 9.2.3(c) can help with increased clamping forces. 
Further, transmission of vibratory forces can be improved 
by changes such as using a poured polymer chock at each 
anchorage point in place of a full bed of grout, or one of the 
several adjustable steel or composite machinery supports that 
additionally correct for angularity and vertical alignment.

The aforementioned tools and techniques are generic sugges-
tions; details depend on specific repair conditions, budget 
availability, significance of machine, desired design service 
life extension of the machine foundation, and feasible design 
details. It is advisable to verify design modifications for the 
repair job against applicable codes, standards, and specifica-
tions, and it should depend on the discretion of the engineer. 
Consider different options and costs associated with each of 
them and come to an optimum solution for the repair job.
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soil properties required for the dynamic analysis of machine 
foundations. Many references are available that provide a 
greater level of detail on the theory, standard practice, and 
factors that affect dynamic soil properties (Mitchell and 
Soga 2005; Seed and Idriss 1970; Stokoe et al. 1999; Andrus 
et al. 2003).

Many factors affect the ability of a given soil to support a 
dynamic machine foundation. These include excessive settle-
ment caused by dynamic or static loads, liquefaction, expan-
sive soils, and frost heave. All these should be addressed by a 
geotechnical engineer familiar with the local conditions.

The soil properties that are most important for the dynamic 
analysis of machine foundations are stiffness, density (ρ) 
and material damping (Dm). Stiffness properties are typically 
provided in the form of small strain Poisson’s ratio (ν), and 
shear modulus (G), or alternatively in the form of shear (Vs) 
and compressional (Vp) wave velocities, as discussed in the 
following.

A.1—Poisson’s ratio
Poisson’s ratio (ν) is the ratio of transverse strain to longi-

tudinal strain in the direction of applied force. In general, 
most soils have Poisson’s ratio values in the range from 0.2 
to 0.5. Laboratory determination of Poisson’s ratio is diffi-
cult; therefore, it is sometimes estimated. Alternatively, for 
soils above the water table, ν is often determined, per Eq. 
(A.1), based on in-place measurements of the shear (Vs) and 
compressional (Vp) wave velocities.
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The dynamic response of a foundation system is generally 
insensitive to variations of Poisson’s ratio in the range of 
values common for dry or partial saturated soils (that is, 0.25 
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