This standard covers the proper design and construction of concrete structures that form part of a nuclear power plant and that have nuclear safety-related functions, but does not cover concrete reactor vessels and concrete containment structures (as defined by Joint ACI-ASME Committee 359).

The structures covered by the Code include concrete structures inside and outside the containment system.

This Code may be referenced and applied subject to agreement between the owner and the Regulatory Authority.

All notation sections have been removed from the beginning of each chapter and consolidated into one list in Chapter 2.

The format of this Code is based on the "Building Code Requirements for Structural Concrete (ACI 318-05)" and incorporates recent revisions of that standard.

The commentary, which is presented after the Code, discusses some of the considerations of ACI Committee 349 in developing "Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349-06)." This information is provided in the commentary because the Code is written as a legal document and therefore cannot present background details or suggestions for carrying out its requirements.

Keywords: admixtures; aggregates; anchorage (structural); authority having jurisdiction (AHJ); beam-column frame; beams (supports); building codes; cements; cold weather construction; columns (supports); combined stress; composite construction (concrete and steel); composite construction (concrete to concrete); compressive strength; concrete construction; concretes; concrete cover; concrete slabs; construction joints; continuity (structural); cracking (fracturing); creep properties; curing; deep beams; deflection; drawings (drafting); earthquake-resistant structures; edge beams; embedded service ducts; flexural strength; floors; folded plates; footings; formwork (construction); frames; hot weather construction; inspection; joists; load tests (structural); loads (forces); mixing; mixture proportioning; modulus of elasticity; moments; nuclear power plants; nuclear reactor containments; nuclear reactor safety; nuclear reactors; pipe columns; pipes (tubes); placing; precast concrete; prestressed concrete; prestressing steels; quality control; reinforced concrete; reinforcing steels; roofs; safety; serviceability; shear strength; shearwalls; shells (structural forms); spans; specifications; splicing; strength; strength analysis; structural analysis; structural design; T-beams; temperature; torsion; walls; water; welded wire reinforcement.

CONTENTS

CODE

Chapter 1—General requirements, p. 349-6

1.1—Scope
1.2—Drawings and specifications
1.3—Inspection
1.4—Approval of special systems of design or construction
1.5—Quality assurance program
Chapter 2—Notation and definitions, p. 349-7
 2.1—Code notation
 2.2—Definitions

Chapter 3—Materials, p. 349-17
 3.1—Tests of materials
 3.2—Cements
 3.3—Aggregates
 3.4—Water
 3.5—Steel reinforcement
 3.6—Admixtures
 3.7—Storage and identification of materials
 3.8—Referenced standards

Chapter 4—Durability requirements, p. 349-21
 4.1—Water-cementitious material ratio
 4.2—Freezing and thawing exposures
 4.3—Sulfate exposures
 4.4—Corrosion protection of reinforcement

Chapter 5—Concrete quality, mixing, and placing, p. 349-22
 5.1—General
 5.2—Selection of concrete proportions
 5.3—Proportioning on the basis of field experience or trial mixtures, or both
 5.4—Proportioning without field experience or trial mixtures
 5.5—Average compressive strength reduction
 5.6—Evaluation and acceptance of concrete
 5.7—Preparation of equipment and place of deposit
 5.8—Mixing
 5.9—Conveying
 5.10—Depositing
 5.11—Curing
 5.12—Cold weather requirements
 5.13—Hot weather requirements

Chapter 6—Formwork, embedded pipes, and construction joints, p. 349-26
 6.1—Design of formwork
 6.2—Removal of forms, shores, and reshoring
 6.3—Conduits and pipes embedded in concrete
 6.4—Construction joints

Chapter 7—Details of reinforcement, p. 349-28
 7.1—Standard hooks
 7.2—Minimum bend diameters
 7.3—Bending
 7.4—Surface conditions of reinforcement
 7.5—Placing reinforcement
 7.6—Spacing limits for reinforcement
 7.7—Concrete protection for reinforcement
 7.8—Special reinforcement details for columns
 7.9—Connections
 7.10—Lateral reinforcement for compression members
 7.11—Lateral reinforcement for flexural members
 7.12—Minimum reinforcement
 7.13—Requirements for structural integrity

Chapter 8—Analysis and design—general considerations, p. 349-32
 8.1—Design methods
 8.2—Loading
 8.3—Methods of analysis
 8.4—Redistribution of negative moments in continuous flexural members
 8.5—Modulus of elasticity
 8.6—Stiffness
 8.7—Span length
 8.8—Columns
 8.9—Arrangement of live load
 8.10—T-beam construction
 8.11—Joist construction
 8.12—Separate floor finish

Chapter 9—Strength and serviceability requirements, p. 349-34
 9.1—General
 9.2—Required strength
 9.3—Design strength
 9.4—Design strength for reinforcement
 9.5—Control of deflections

Chapter 10—Flexure and axial loads, p. 349-37
 10.1—Scope
 10.2—Design assumptions
 10.3—General principles and requirements
 10.4—Distance between lateral supports of flexural members
 10.5—Minimum reinforcement of flexural members
 10.6—Distribution of flexural reinforcement in beams and one-way slabs
 10.7—Deep beams
 10.8—Design dimensions for compression members
 10.9—Limits for reinforcement of compression members
 10.10—Slenderness effects in compression members
 10.11—Magnified moments—general
 10.12—Magnified moments—nonsway frames
 10.13—Magnified moments—sway frames
 10.14—Axially loaded members supporting slab system
 10.15—Transmission of column loads through floor system
 10.16—Composite compression members
 10.17—Bearing strength

Chapter 11—Shear and torsion, p. 349-42
 11.1—Shear strength
 11.2—Lightweight concrete
 11.3—Shear strength provided by concrete for non-prestressed members
 11.4—Shear strength provided by concrete for prestressed members
 11.5—Shear strength provided by shear reinforcement
 11.6—Design for torsion
 11.7—Shear-friction
 11.8—Deep beams
 11.9—Special provisions for brackets and corbels
 11.10—Special provisions for walls
11.11—Transfer of moments to columns
11.12—Special provisions for slabs and footings

Chapter 12—Development and splices of reinforcement, p. 349-51
12.1—Development of reinforcement—general
12.2—Development of deformed bars and deformed wire in tension
12.3—Development of deformed bars and deformed wire in compression
12.4—Development of bundled bars
12.5—Development of standard hooks in tension
12.6—Mechanical anchorage
12.7—Development of welded deformed wire reinforcement in tension
12.8—Development of welded plain wire reinforcement in tension
12.9—Development of prestressing strand
12.10—Development of flexural reinforcement—general
12.11—Development of positive moment reinforcement
12.12—Development of negative moment reinforcement
12.13—Development of web reinforcement
12.14—Splices of reinforcement—general
12.15—Splices of deformed bars and deformed wire in tension
12.16—Splices of deformed bars in compression
12.17—Special splice requirements for columns
12.18—Splices of welded deformed wire reinforcement in tension
12.19—Splices of welded plain wire reinforcement in tension

Chapter 13—Two-way slab systems, p. 349-56
13.1—Scope
13.2—Definitions
13.3—Slab reinforcement
13.4—Openings in slab systems
13.5—Design procedures
13.6—Direct design method
13.7—Equivalent frame method

Chapter 14—Walls, p. 349-62
14.1—Scope
14.2—General
14.3—Minimum reinforcement
14.4—Walls designed as compression members
14.5—Empirical design method
14.6—Nonbearing walls
14.7—Walls as grade beams
14.8—Alternative design of slender walls

Chapter 15—Footings, p. 349-63
15.1—Scope
15.2—Loads and reactions
15.3—Footings supporting circular or regular polygon-shaped columns or pedestals
15.4—Moment in footings
15.5—Shear in footings
15.6—Development of reinforcement in footings
15.7—Minimum footing depth
15.8—Transfer of force at base of column, wall, or reinforced pedestal
15.9—Sloped or stepped footings
15.10—Combined footings and mats

Chapter 16—Precast concrete, p. 349-65
16.1—Scope
16.2—General
16.3—Distribution of forces among members
16.4—Member design
16.5—Structural integrity
16.6—Connection and bearing design
16.7—Items embedded after concrete placement
16.8—Marking and identification
16.9—Handling
16.10—Strength evaluation of precast construction

Chapter 17—Composite concrete flexural members, p. 349-67
17.1—Scope
17.2—General
17.3—Shoring
17.4—Vertical shear strength
17.5—Horizontal shear strength
17.6—Ties for horizontal shear

Chapter 18—Prestressed concrete, p. 349-68
18.1—Scope
18.2—General
18.3—Design assumptions
18.4—Serviceability requirements—flexural members
18.5—Permissible stresses in prestressing steel
18.6—Loss of prestress
18.7—Flexural strength
18.8—Limits for reinforcement of flexural members
18.9—Minimum bonded reinforcement
18.10—Statically indeterminate structures
18.11—Compression members—combined flexure and axial loads
18.12—Slab systems
18.13—Post-tensioned tendon anchorage zones
18.14—Intentionally left blank
18.15—Intentionally left blank
18.16—Corrosion protection for unbonded tendons
18.17—Post-tensioning ducts
18.18—Grout for bonded tendons
18.19—Protection for prestressing steel
18.20—Application and measurement of prestressing force
18.21—Post-tensioning anchorages and couplers
18.22—External post-tensioning

Chapter 19—Shells, p. 349-73
19.1—Scope
19.2—General
19.3—Design strength of materials
19.4—Section design and reinforcement requirements
19.5—Construction
Chapter 20—Strength evaluation of existing structures, p. 349-74

20.1—Strength evaluation—general
20.2—Analytical investigations—general
20.3—Load tests—general
20.4—Load test procedure
20.5—Loading criteria
20.6—Acceptance criteria
20.7—Safety

Chapter 21—Provisions for seismic design, p. 349-75

21.1—Definitions
21.2—General requirements
21.3—Flexural members of moment frames
21.4—Moment frame members subjected to bending and axial load
21.5—Joints of moment frames
21.6—Intentionally left blank
21.7—Reinforced concrete structural walls and coupling beams
21.8—Intentionally left blank
21.9—Structural diaphragms and trusses
21.10—Foundations

APPENDIXES

Appendix A—Strut-and-tie models, p. 349-82
A.1—Definitions
A.2—Strut-and-tie model design procedure
A.3—Strength of struts
A.4—Strength of ties
A.5—Strength of nodal zones

Appendix B—Intentionally left blank, p. 349-84

Appendix C—Alternative load and strength-reduction factors, p. 349-84
C.1—General
C.2—Required strength
C.3—Design strength

Appendix D—Anchoring to concrete, p. 349-85
D.1—Definitions
D.2—Scope
D.3—General requirements
D.4—General requirements for strength of anchors
D.5—Design requirements for tensile loading
D.6—Design requirements for shear loading
D.7—Interaction of tensile and shear forces
D.8—Required edge distances, spacings, and thicknesses to preclude splitting failure
D.9—Installation of anchors
D.10—Structural plates, shapes, and specialty inserts
D.11—Shear strength of embedded plates and shear lugs
D.12—Grouted embedments

Appendix E—Thermal considerations, p. 349-92
E.1—Scope
E.2—Definitions
E.3—General design requirements
E.4—Concrete temperatures

Appendix F—Special provisions for impulsive and impactive effects, p. 349-93
F.1—Scope
F.2—Dynamic strength increase
F.3—Deformation
F.4—Requirements to assure ductility
F.5—Shear strength
F.6—Impulsive effects
F.7—Impactive effects
F.8—Impactive and impulsive loads

Appendix G—SI metric equivalents of U.S. Customary Units, p. 349-96

COMMENTARY

Introduction, p. 349-101

Chapter R1—General requirements, p. 349-101
R1.1—Scope
R1.2—Drawings and specifications
R1.3—Inspection
R1.4—Approval of special systems of design or construction
R1.5—Quality assurance program

Chapter R2—Notation and definitions, p. 349-102
R2.1—Commentary notation
R2.2—Definitions

Chapter R3—Materials, p. 349-102
R3.1—Tests of materials
R3.2—Cements
R3.3—Aggregates
R3.4—Water
R3.5—Steel reinforcement
R3.6—Admixtures
R3.7—Storage and identification of materials

Chapter R4—Durability requirements, p. 349-104
R4.2—Freezing and thawing exposures
R4.3—Sulfate exposures
R4.4—Corrosion protection of reinforcement

Chapter R5—Concrete quality, mixing, and placing, p. 349-105
R5.1—General
R5.3—Proportioning on the basis of field experience, or trial mixtures, or both
R5.4—Proportioning without field experience or trial mixtures
R5.6—Evaluation and acceptance of concrete
R5.7—Preparation of equipment and place of deposit
R5.9—Conveying
R5.10—Depositing
R5.11—Curing
R5.12—Cold weather requirements
R5.13—Hot weather requirements
Chapter R6—Formwork, embedded pipes, and construction joints, p. 349-108
R6.1—Design of formwork
R6.2—Removal of forms, shores, and reshoring
R6.3—Conduits and pipes embedded in concrete
R6.4—Construction joints

Chapter R7—Details of reinforcement, p. 349-108
R7.4—Surface conditions of reinforcement
R7.10—Requirements for structural integrity

Chapter R8—Analysis and design—general considerations, p. 349-109
R8.2—Loading
R8.3—Methods of analysis
R8.5—Modulus of elasticity
R8.11—Joist construction

Chapter R9—Strength and serviceability requirements, p. 349-109
R9.1—General
R9.2—Required strength
R9.3—Design strength
R9.4—Design strength for reinforcement
R9.5—Control of deflections

Chapter R10—Flexure and axial loads, p. 349-113
R10.6—Distribution of flexural reinforcement in beams and one-way slabs

Chapter R11—Shear and torsion, p. 349-113
R11.12—Special provisions for slabs and footings

Chapter R12—Development and splices of reinforcement, p. 349-113
R12.6—Mechanical anchorage
R12.14—Splices of reinforcement—general
R12.15—Splices of deformed bars and deformed wire in tension

Chapter R13—Two-way slab systems, p. 349-114

Chapter R14—Walls, p. 349-114
R14.3—Minimum reinforcement

Chapter R15—Footings, p. 349-114

Chapter R16—Precast concrete, p. 349-114

Chapter R17—Composite concrete flexural members, p. 349-114

Chapter R18—Prestressed concrete, p. 349-114

Chapter R19—Shells, p. 349-114
R19.1—Scope
R19.2—General
R19.4—Section design and reinforcement requirements

Chapter R20—Strength evaluation of existing structures, p. 349-115
R20.1—Strength evaluation—general
R20.2—Analytical investigations—general
R20.3—Load tests—general
R20.4—Load test procedure
R20.5—Loading criteria
R20.6—Acceptance criteria

Chapter R21—Provisions for seismic design, p. 349-116
R21.1—Definitions
R21.2—General requirements
R21.3—Flexural members of moment frames
R21.4—Moment frame members subjected to bending and axial load
R21.5—Joints of moment frames
R21.6—Intentionally left blank
R21.7—Reinforced concrete structural walls and coupling beams
R21.8—Intentionally left blank
R21.9—Structural diaphragms and trusses
R21.10—Foundations

APPENDIXES
Appendix RA—Strut-and-tie models, p. 349-127
Appendix RB—Intentionally left blank, p. 349-127
Appendix RC—Alternative load and design strength-reduction factors, p. 349-127
RC.1—General
RC.2—Required strength
RC.3—Design strength
Appendix RD—Anchoring to concrete, p. 349-128
RD.1—Definitions
RD.2—Scope
RD.3—General requirements
RD.4—General requirements for strength of anchors
RD.5—Design requirements for tensile loading
RD.6—Design requirements for shear loading
RD.7—Interaction of tensile and shear forces
RD.8—Required edge distances, spacings, and thicknesses to preclude splitting failure
RD.9—Installation of anchors
RD.10—Structural plates, shapes, and specialty inserts
RD.11—Shear strength of embedded plates and shear lugs
Appendix RE—Thermal considerations, p. 349-141
RE.1—Scope
RE.2—Definitions
RE.3—General design requirements
RE.4—Concrete temperatures
Appendix RF—Special provisions for impulsive and impactive effects, p. 349-144
RF.1—Scope
RF.2—Dynamic strength increase
RF.3—Deformation
Summary of changes for 349-06 Code, p. 349-150

CODE

CHAPTER 1—GENERAL REQUIREMENTS

1.1—Scope

1.1.1 This Code provides minimum requirements for design and construction of nuclear safety-related concrete structures and structural members for nuclear power generating stations. Safety-related structures and structural members subject to this standard are those concrete structures that support, house, or protect nuclear safety class systems or component parts of nuclear safety class systems.

Specifically excluded from this Code are those structures covered by “Code for Concrete Reactor Vessels and Containments,” ASME Boiler and Pressure Vessel Code Section III, Division 2, and pertinent General Requirements (ACI 359).

This Code includes design and loading conditions that are unique to nuclear facilities, including shear design under biaxial tension conditions, consideration of thermal and seismic effects, and impact and impulsive loads.

For structural concrete, f'_{c} shall not be less than 2500 psi, unless otherwise specified.

1.1.2 This Code shall govern in all matters pertaining to design and construction of reinforced concrete structures, as defined in 1.1.1, except wherever this Code is in conflict with the specific provisions of the authority having jurisdiction (AHJ).

1.1.3 This Code shall govern in all matters pertaining to design, construction, and material properties wherever this Code is in conflict with requirements contained in other standards referenced in this Code.

1.1.4 For special structures, such as arches, tanks, reservoirs, bins and silos, blast-resistant structures, and chimneys, provisions of this Code shall govern where applicable.

1.1.5 Intentionally left blank.

1.1.6 Intentionally left blank.

1.1.7 Concrete on steel form deck

1.1.7.1 Design and construction of structural concrete slabs cast on stay-in-place, noncomposite steel form deck are governed by this Code.

1.1.7.2 This Code does not govern the design of structural concrete slabs cast on stay-in-place, composite steel form deck. Concrete used in the construction of such slabs shall be governed by Chapters 1 through 7 of this Code, where applicable.

1.1.8 Special provisions for earthquake resistance—Provisions of Chapter 21 shall be satisfied. See 21.2.1.

1.2—Drawings and specifications

1.2.1 Copies of design drawings, typical details, and specifications for all structural concrete construction shall bear the seal of a licensed engineer. These drawings (including supplementary drawings to generate the as-built condition), typical details, and specifications shall be retained by the owner, or his designee, as a permanent record for the life of the structure. As a minimum, these drawings, details, and specifications together shall show:

(a) Name and date of issue of Code and supplement to which design conforms;

(b) Live load and other loads used in design;

(c) Specified compressive strength of concrete at stated ages or stages of construction for which each part of structure is designed;

(d) Specified strength or grade of reinforcing steel;

(e) Size and location of all structural members, reinforcement, and anchors;

(f) Provision for dimensional changes resulting from creep, shrinkage, and temperature;

(g) Magnitude and location of prestressing forces;

(h) Anchorage length of reinforcement and location and length of lap splices;

(i) Type and location of mechanical and welded splices of reinforcement;

(j) Details and location of all contraction or isolation joints;

(k) Minimum concrete compressive strength at time of post tensioning;

(l) Stresses for post-tensioning tendons;

(m) Statement if slab-on-ground is designed as a structural diaphragm, see 21.10.3.4.

1.2.2 Calculations pertinent to design and the basis of design (including the results of model analysis, if any) shall be retained by the owner or his designee, as a permanent record for the life of the structure. Accompanying these calculations shall be a statement of the applicable design and analysis methods. When computer programs are used, design assumptions and identified input and output data may be retained instead of calculations. Model analysis shall be permitted to supplement calculations.

1.3—Inspection

1.3.1 The owner is responsible for the inspection of concrete construction throughout all work stages. The owner shall require compliance with design drawings and specifications. The owner shall also keep records required for quality assurance and traceability of construction, fabrication, material procurement, manufacture, or installation.

1.3.2 The owner shall be responsible for designating the records to be maintained and the duration of retention. Records pertinent to plant modifications or revisions, in-service inspections, and durability and performance of structures shall be maintained for the life of the plant. The owner shall be responsible for continued maintenance of the records. The records shall be maintained at the power plant site, or at other locations as determined by the owner. As a minimum, the following installation/construction records shall be considered for lifetime retention:

(a) Check-off sheets for tendon, reinforcing steel, and anchor installation;

(b) Concrete cylinder test reports and charts;