Guide for Concrete Highway Bridge Deck Construction

Reported by ACI Committee 345

American Concrete Institute®
Guide for Concrete Highway Bridge Deck Construction
Reported by ACI Committee 345

Richard E. Weyers
Chair

Gerald H. Anderson
Michael C. Brown
Robert J. Gulyas*

Paul D. Carter
Secretary

Johan L. Silfwerbrand
Michael M. Sprinkel
Paul J. St. John
Jerzy Z. Zemajtis

*Deceased.

Consulting members

James C. Anderson
Byron T. Danley
Fouad H. Fouad
Allan C. Harwood

Martin E. Iorns
Yash Paul Virmani
Jeffrey P. Wouters

The service-life performance of concrete bridge decks, including maintenance, repair, and rehabilitation needs, is directly related to the care exercised from the preconstruction through post-construction period. This guide provides recommendations for bridge deck construction based on considerations of durability, concrete materials, reinforcement, placing, finishing and curing, and overlays.

Keywords: admixtures; aggregate; air entrainment; bridge decks; concrete curing; concrete finishing; concrete overlays; concrete placing; cracking; durability; polymer concrete; reinforcing bars; scaling; shrinkage; skid resistance.

CONTENTS
Chapter 1—Introduction and scope, p. 2
1.1—Introduction
1.2—Scope

Chapter 2—Definitions, p. 2
2.1—Definitions

Chapter 3—Design and durability considerations, p. 2
3.1—General
3.2—Concrete and reinforcement materials
3.3—Positive protective systems
3.4—Arrangement and cover of reinforcement
3.5—Deck thickness
3.6—Deck drainage
3.7—Joint-forming materials and locations
3.8—Types and causes of deck cracking

ACI Committee Reports, Guides, Manuals, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This document is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom.

Reference to this document shall not be made in contract documents. If items found in this document are desired by the Architect/Engineer to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the Architect/Engineer.

ACI 345R-11 supersedes 345R-91 and was adopted and published September 2011. Copyright © 2011, American Concrete Institute.
All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction

The deck of a highway bridge serves both structural and functional purposes for the structure. As a structural component, it provides the load path to safely transfer forces from wheel loads to the supporting superstructure and substructure elements. It may also contribute, through composite action, to the performance of primary superstructure components. Equally, the construction and condition of a deck directly impacts serviceability or the ability of the structure to safely and efficiently carry highway traffic by providing smoothness, skid resistance, and resistance to deflections under wheel loads. The riding surface of a highway bridge deck should provide a continuation of the pavement segments that it connects. The surface should be free from characteristics or profile deviations that impart objectionable or unsafe riding qualities. The desirable qualities should persist with minimum maintenance throughout the projected service life of the structure.

Roughness, cracking, spalling, scaling, and poor skid resistance are defects that result when the many details that influence their occurrence are not given sufficient attention. Recognition of the interaction of design, materials, and construction practices, as well as environmental factors, is the important first step in achieving smooth and durable decks.

Many decks remain smooth and free from surface deterioration and retain skid resistance for many years. When deficiencies occur, they usually take one of the forms described in this guide. The contribution of various aspects of deck construction to defects is discussed and guidelines based on theory and experience presented that should reduce the probabilities of occurrence to acceptable levels.

1.2—Scope

This guide presents considerations to take in the design and a summary of construction practices for conventionally reinforced concrete highway bridge decks. Such decks are typically supported by multiple simple- or continuous-span steel or prestressed concrete girders, or integral reinforced concrete members. The service-life performance of concrete bridge decks, including maintenance, repair, and rehabilitation needs, is directly related to the care exercised from preconstruction through the post-construction period. Recommendations are presented for design and durability considerations, concrete materials, reinforcement, placing, finishing and curing, and the use of overlays.

Although some performance and durability factors discussed may be applicable, design and construction of prestressed bridge decks are presently beyond the scope of this guide. Thus, prestressing steel is not included in the reinforcement section. Guidance for the design of prestressed bridge decks is being developed elsewhere (Swartz and Schokker 2008).

CHAPTER 2—DEFINITIONS

2.1—Definitions

ACI provides a comprehensive list of definitions through an online resource, “ACI Concrete Terminology,” at http://terminology.concrete.org. Definitions provided herein complement that resource.

*crack, reflective*—a crack that forms in a bonded overlay or wearing course caused by upward extension of moving crack or joint in the substrate.

*washboarding*—undulations in the finished surface of a deck that cause vibrations of undesirable frequency and amplitude in passing vehicles.

CHAPTER 3—DESIGN AND DURABILITY CONSIDERATIONS

3.1—General

Chapter 3 emphasizes design factors that may affect the resistance of a bridge deck to chemical and environmental exposure, including potential for freezing and thawing, deleterious chemical reactions with concrete constituents, or chloride-induced corrosion damage. The design considerations of this chapter are not concerned with the structural analysis of the bridge deck. Structural aspects of the design, however, can have implications in the development of internal stresses...